通过基因速度估算优化运输揭示动态基因调控网络

Wenjun Zhao, Erica Larschan, Bjorn Sandstede, Ritambhara Singh
{"title":"通过基因速度估算优化运输揭示动态基因调控网络","authors":"Wenjun Zhao, Erica Larschan, Bjorn Sandstede, Ritambhara Singh","doi":"10.1101/2024.09.12.612590","DOIUrl":null,"url":null,"abstract":"Inferring gene regulatory networks from gene expression data is an important and challenging problem in the biology community. We propose OTVelo, a methodology that takes time-stamped single-cell gene expression data as input and predicts gene regulation across two time points. It is known that the rate of change of gene expression, which we will refer to as gene velocity, provides crucial information that enhances such inference; however, this information is not always available due to the limitations in sequencing depth. Our algorithm overcomes this limitation by estimating gene velocities using optimal transport. We then infer gene regulation using time-lagged correlation and Granger causality via regularized linear regression. Instead of providing an aggregated network across all time points, our method uncovers the underlying dynamical mechanism across time points. We validate our algorithm on 13 simulated datasets with both synthetic and curated networks and demonstrate its efficacy on 4 experimental data sets.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation\",\"authors\":\"Wenjun Zhao, Erica Larschan, Bjorn Sandstede, Ritambhara Singh\",\"doi\":\"10.1101/2024.09.12.612590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inferring gene regulatory networks from gene expression data is an important and challenging problem in the biology community. We propose OTVelo, a methodology that takes time-stamped single-cell gene expression data as input and predicts gene regulation across two time points. It is known that the rate of change of gene expression, which we will refer to as gene velocity, provides crucial information that enhances such inference; however, this information is not always available due to the limitations in sequencing depth. Our algorithm overcomes this limitation by estimating gene velocities using optimal transport. We then infer gene regulation using time-lagged correlation and Granger causality via regularized linear regression. Instead of providing an aggregated network across all time points, our method uncovers the underlying dynamical mechanism across time points. We validate our algorithm on 13 simulated datasets with both synthetic and curated networks and demonstrate its efficacy on 4 experimental data sets.\",\"PeriodicalId\":501307,\"journal\":{\"name\":\"bioRxiv - Bioinformatics\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.12.612590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从基因表达数据推断基因调控网络是生物学界一个重要而又具有挑战性的问题。我们提出的 OTVelo 是一种以时间戳单细胞基因表达数据为输入,预测两个时间点基因调控的方法。众所周知,基因表达的变化率(我们将其称为基因速度)提供了增强这种推断的关键信息;然而,由于测序深度的限制,这种信息并不总是可用的。我们的算法克服了这一局限性,利用最优传输估算基因速度。然后,我们通过正则化线性回归,利用时滞相关性和格兰杰因果关系推断基因调控。我们的方法不是提供跨所有时间点的聚合网络,而是揭示跨时间点的潜在动态机制。我们在 13 个模拟数据集上验证了我们的算法,其中既有合成网络,也有策划网络,并在 4 个实验数据集上证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation
Inferring gene regulatory networks from gene expression data is an important and challenging problem in the biology community. We propose OTVelo, a methodology that takes time-stamped single-cell gene expression data as input and predicts gene regulation across two time points. It is known that the rate of change of gene expression, which we will refer to as gene velocity, provides crucial information that enhances such inference; however, this information is not always available due to the limitations in sequencing depth. Our algorithm overcomes this limitation by estimating gene velocities using optimal transport. We then infer gene regulation using time-lagged correlation and Granger causality via regularized linear regression. Instead of providing an aggregated network across all time points, our method uncovers the underlying dynamical mechanism across time points. We validate our algorithm on 13 simulated datasets with both synthetic and curated networks and demonstrate its efficacy on 4 experimental data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信