Victor H. Jorge-Pérez, Paulo Martins, Victor D. Mendoza-Rubio
{"title":"有限准投影维数模块的广义深度公式","authors":"Victor H. Jorge-Pérez, Paulo Martins, Victor D. Mendoza-Rubio","doi":"arxiv-2409.08996","DOIUrl":null,"url":null,"abstract":"In this paper, we present a generalized formulation of the depth formula for\nmodules over Noetherian local rings, with an emphasis on quasi-projective\ndimension, extending the classical result of the depth formula originally\ndemonstrated by Auslander, which involved projective dimension. Thus, we\nreplace projective dimension with quasi-projective dimension and show that the\ngeneral version of the depth formula remains valid under these conditions. This\ngeneralization of the depth formula allows us to obtain new consequences and\napplications.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalized depth formula for modules of finite quasi-projective dimension\",\"authors\":\"Victor H. Jorge-Pérez, Paulo Martins, Victor D. Mendoza-Rubio\",\"doi\":\"arxiv-2409.08996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a generalized formulation of the depth formula for\\nmodules over Noetherian local rings, with an emphasis on quasi-projective\\ndimension, extending the classical result of the depth formula originally\\ndemonstrated by Auslander, which involved projective dimension. Thus, we\\nreplace projective dimension with quasi-projective dimension and show that the\\ngeneral version of the depth formula remains valid under these conditions. This\\ngeneralization of the depth formula allows us to obtain new consequences and\\napplications.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generalized depth formula for modules of finite quasi-projective dimension
In this paper, we present a generalized formulation of the depth formula for
modules over Noetherian local rings, with an emphasis on quasi-projective
dimension, extending the classical result of the depth formula originally
demonstrated by Auslander, which involved projective dimension. Thus, we
replace projective dimension with quasi-projective dimension and show that the
general version of the depth formula remains valid under these conditions. This
generalization of the depth formula allows us to obtain new consequences and
applications.