{"title":"科斯祖尔模块的正则性","authors":"Tony J. Puthenpurakal","doi":"arxiv-2409.11840","DOIUrl":null,"url":null,"abstract":"Let $K$ be a field and let $S = K[X_1, \\ldots, X_n]$. Let $I$ be a graded\nideal in $S$ and let $M$ be a finitely generated graded $S$-module. We give\nupper bounds on the regularity of Koszul homology modules $H_i(I, M)$ for\nseveral classes of $I$ and $M$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of Koszul modules\",\"authors\":\"Tony J. Puthenpurakal\",\"doi\":\"arxiv-2409.11840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $K$ be a field and let $S = K[X_1, \\\\ldots, X_n]$. Let $I$ be a graded\\nideal in $S$ and let $M$ be a finitely generated graded $S$-module. We give\\nupper bounds on the regularity of Koszul homology modules $H_i(I, M)$ for\\nseveral classes of $I$ and $M$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $K$ be a field and let $S = K[X_1, \ldots, X_n]$. Let $I$ be a graded
ideal in $S$ and let $M$ be a finitely generated graded $S$-module. We give
upper bounds on the regularity of Koszul homology modules $H_i(I, M)$ for
several classes of $I$ and $M$.