{"title":"决议超过严格的完整决议","authors":"Tony J. Puthenpurakal","doi":"arxiv-2409.11877","DOIUrl":null,"url":null,"abstract":"Let $(Q, \\mathfrak{n})$ be a regular local ring and let $f_1, \\ldots, f_c \\in\n\\mathfrak{n}^2$ be a $Q$-regular sequence. Set $(A, \\mathfrak{m}) =\n(Q/(\\mathbf{f}), \\mathfrak{n}/(\\mathbf{f}))$. Further assume that the initial\nforms $f_1^*, \\ldots, f_c^*$ form a $G(Q) = \\bigoplus_{n \\geq\n0}\\mathfrak{n}^i/\\mathfrak{n}^{i+1}$-regular sequence. Without loss of any\ngenerality assume $ord_Q(f_1) \\geq ord_Q(f_2) \\geq \\cdots \\geq ord_Q(f_c)$. Let\n$M$ be a finitely generated $A$-module and let $(\\mathbb{F}, \\partial)$ be a\nminimal free resolution of $M$. Then we prove that $ord(\\partial_i) \\leq\nord_Q(f_1) - 1$ for all $i \\gg 0$. We also construct an MCM $A$-module $M$ such\nthat $ord(\\partial_{2i+1}) = ord_Q(f_1) - 1$ for all $i \\geq 0$. We also give a\nconsiderably simpler proof regarding the periodicity of ideals of minors of\nmaps in a minimal free resolution of modules over arbitrary complete\nintersection rings (not necessarily strict).","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resolutions over strict complete resolutions\",\"authors\":\"Tony J. Puthenpurakal\",\"doi\":\"arxiv-2409.11877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(Q, \\\\mathfrak{n})$ be a regular local ring and let $f_1, \\\\ldots, f_c \\\\in\\n\\\\mathfrak{n}^2$ be a $Q$-regular sequence. Set $(A, \\\\mathfrak{m}) =\\n(Q/(\\\\mathbf{f}), \\\\mathfrak{n}/(\\\\mathbf{f}))$. Further assume that the initial\\nforms $f_1^*, \\\\ldots, f_c^*$ form a $G(Q) = \\\\bigoplus_{n \\\\geq\\n0}\\\\mathfrak{n}^i/\\\\mathfrak{n}^{i+1}$-regular sequence. Without loss of any\\ngenerality assume $ord_Q(f_1) \\\\geq ord_Q(f_2) \\\\geq \\\\cdots \\\\geq ord_Q(f_c)$. Let\\n$M$ be a finitely generated $A$-module and let $(\\\\mathbb{F}, \\\\partial)$ be a\\nminimal free resolution of $M$. Then we prove that $ord(\\\\partial_i) \\\\leq\\nord_Q(f_1) - 1$ for all $i \\\\gg 0$. We also construct an MCM $A$-module $M$ such\\nthat $ord(\\\\partial_{2i+1}) = ord_Q(f_1) - 1$ for all $i \\\\geq 0$. We also give a\\nconsiderably simpler proof regarding the periodicity of ideals of minors of\\nmaps in a minimal free resolution of modules over arbitrary complete\\nintersection rings (not necessarily strict).\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $(Q, \mathfrak{n})$ be a regular local ring and let $f_1, \ldots, f_c \in
\mathfrak{n}^2$ be a $Q$-regular sequence. Set $(A, \mathfrak{m}) =
(Q/(\mathbf{f}), \mathfrak{n}/(\mathbf{f}))$. Further assume that the initial
forms $f_1^*, \ldots, f_c^*$ form a $G(Q) = \bigoplus_{n \geq
0}\mathfrak{n}^i/\mathfrak{n}^{i+1}$-regular sequence. Without loss of any
generality assume $ord_Q(f_1) \geq ord_Q(f_2) \geq \cdots \geq ord_Q(f_c)$. Let
$M$ be a finitely generated $A$-module and let $(\mathbb{F}, \partial)$ be a
minimal free resolution of $M$. Then we prove that $ord(\partial_i) \leq
ord_Q(f_1) - 1$ for all $i \gg 0$. We also construct an MCM $A$-module $M$ such
that $ord(\partial_{2i+1}) = ord_Q(f_1) - 1$ for all $i \geq 0$. We also give a
considerably simpler proof regarding the periodicity of ideals of minors of
maps in a minimal free resolution of modules over arbitrary complete
intersection rings (not necessarily strict).