Junkai Wang, Anh M Tran-Huynh, Beom-Jun Kim, Doug W Chan, Matthew V Holt, Diana Fandino, Xin Yu, Xiaoli Qi, Jin Wang, Weijie Zhang, Yi-Hsuan Wu, Meenakshi Anurag, Xiang H-F Zhang, Bing Zhang, Chonghui Cheng, Charles E Foulds, Matthew J Ellis
{"title":"DAPK3 可调节三阴性乳腺癌细胞的迁移和侵袭","authors":"Junkai Wang, Anh M Tran-Huynh, Beom-Jun Kim, Doug W Chan, Matthew V Holt, Diana Fandino, Xin Yu, Xiaoli Qi, Jin Wang, Weijie Zhang, Yi-Hsuan Wu, Meenakshi Anurag, Xiang H-F Zhang, Bing Zhang, Chonghui Cheng, Charles E Foulds, Matthew J Ellis","doi":"10.1093/pnasnexus/pgae401","DOIUrl":null,"url":null,"abstract":"Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) leading to the observation that Death-Associated Protein Kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with downregulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that Leucine-Zipper Protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper-domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a novel regulator of EMT/desmosome components that promote TNBC cell migration.","PeriodicalId":516525,"journal":{"name":"PNAS Nexus","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DAPK3 modulates migration and invasion of triple negative breast cancer cells\",\"authors\":\"Junkai Wang, Anh M Tran-Huynh, Beom-Jun Kim, Doug W Chan, Matthew V Holt, Diana Fandino, Xin Yu, Xiaoli Qi, Jin Wang, Weijie Zhang, Yi-Hsuan Wu, Meenakshi Anurag, Xiang H-F Zhang, Bing Zhang, Chonghui Cheng, Charles E Foulds, Matthew J Ellis\",\"doi\":\"10.1093/pnasnexus/pgae401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) leading to the observation that Death-Associated Protein Kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with downregulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that Leucine-Zipper Protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper-domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a novel regulator of EMT/desmosome components that promote TNBC cell migration.\",\"PeriodicalId\":516525,\"journal\":{\"name\":\"PNAS Nexus\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgae401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DAPK3 modulates migration and invasion of triple negative breast cancer cells
Sixteen patient-derived xenografts (PDXs) were analyzed using a mass spectrometry (MS)-based kinase inhibitor pulldown assay (KIPA) leading to the observation that Death-Associated Protein Kinase 3 (DAPK3) is significantly and specifically overexpressed in the triple negative breast cancer (TNBC) models. Validation studies confirmed enrichment of DAPK3 protein, in both TNBC cell lines and tumors, independent of mRNA levels. Genomic knockout of DAPK3 in TNBC cell lines inhibited in vitro migration and invasion, along with downregulation of an epithelial-mesenchymal transition (EMT) signature, which was confirmed in vivo. The kinase and leucine-zipper domains within DAPK3 were shown by mutational analysis to be essential for functionality. Notably, DAPK3 was found to inhibit the levels of desmoplakin (DSP), a crucial component of the desmosome complex, thereby explaining the observed migration and invasion effects. Further exploration with immunoprecipitation-mass spectrometry (IP-MS) identified that Leucine-Zipper Protein 1 (LUZP1) is a preferential binding partner of DAPK3. LUZP1 engages in a leucine-zipper-domain-mediated interaction that protects DAPK3 from proteasomal degradation. Thus, the DAPK3/LUZP1 heterodimer emerges as a novel regulator of EMT/desmosome components that promote TNBC cell migration.