Fabiola Ramelli, Jan Henneberger, Christopher Fuchs, Anna J Miller, Nadja Omanovic, Robert Spirig, Huiying Zhang, Robert O David, Kevin Ohneiser, Patric Seifert, Ulrike Lohmann
{"title":"通过冰晶生长展示天气变化对云层研究的再利用","authors":"Fabiola Ramelli, Jan Henneberger, Christopher Fuchs, Anna J Miller, Nadja Omanovic, Robert Spirig, Huiying Zhang, Robert O David, Kevin Ohneiser, Patric Seifert, Ulrike Lohmann","doi":"10.1093/pnasnexus/pgae402","DOIUrl":null,"url":null,"abstract":"The representation of cloud processes in models is one of the largest sources of uncertainty in weather forecast and climate projections. While laboratory settings offer controlled conditions for studying cloud processes, they cannot reproduce the full range of conditions and interactions present in natural cloud systems. To bridge this gap, here we leverage weather modification, specifically glaciogenic cloud seeding, to investigate ice growth rates within natural clouds. Seeding experiments were conducted in supercooled stratus clouds (at −8 to −5 °C) using an uncrewed aerial vehicle, and the created ice crystals were measured 4-10 min downwind by in situ and ground-based remote sensing instrumentation. We observed substantial variability in ice crystal growth rates within natural clouds, attributed to variations in ice crystal number concentrations and in the supersaturation, which is difficult to reproduce in the laboratory and which implies faster precipitation initiation than previously thought. We found that for the experiments conducted at −5.2 °C, the ice crystal populations grew nearly linearly during the time interval from 6 to 10 minutes. Our results demonstrate that the targeted use of weather modification techniques can be employed for fundamental cloud research (e.g., ice growth processes, aerosol-cloud interactions), helping to advance cloud microphysics parameterizations and to improve weather forecasts and climate projections.","PeriodicalId":516525,"journal":{"name":"PNAS Nexus","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repurposing weather modification for cloud research showcased by ice crystal growth\",\"authors\":\"Fabiola Ramelli, Jan Henneberger, Christopher Fuchs, Anna J Miller, Nadja Omanovic, Robert Spirig, Huiying Zhang, Robert O David, Kevin Ohneiser, Patric Seifert, Ulrike Lohmann\",\"doi\":\"10.1093/pnasnexus/pgae402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The representation of cloud processes in models is one of the largest sources of uncertainty in weather forecast and climate projections. While laboratory settings offer controlled conditions for studying cloud processes, they cannot reproduce the full range of conditions and interactions present in natural cloud systems. To bridge this gap, here we leverage weather modification, specifically glaciogenic cloud seeding, to investigate ice growth rates within natural clouds. Seeding experiments were conducted in supercooled stratus clouds (at −8 to −5 °C) using an uncrewed aerial vehicle, and the created ice crystals were measured 4-10 min downwind by in situ and ground-based remote sensing instrumentation. We observed substantial variability in ice crystal growth rates within natural clouds, attributed to variations in ice crystal number concentrations and in the supersaturation, which is difficult to reproduce in the laboratory and which implies faster precipitation initiation than previously thought. We found that for the experiments conducted at −5.2 °C, the ice crystal populations grew nearly linearly during the time interval from 6 to 10 minutes. Our results demonstrate that the targeted use of weather modification techniques can be employed for fundamental cloud research (e.g., ice growth processes, aerosol-cloud interactions), helping to advance cloud microphysics parameterizations and to improve weather forecasts and climate projections.\",\"PeriodicalId\":516525,\"journal\":{\"name\":\"PNAS Nexus\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS Nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgae402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS Nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Repurposing weather modification for cloud research showcased by ice crystal growth
The representation of cloud processes in models is one of the largest sources of uncertainty in weather forecast and climate projections. While laboratory settings offer controlled conditions for studying cloud processes, they cannot reproduce the full range of conditions and interactions present in natural cloud systems. To bridge this gap, here we leverage weather modification, specifically glaciogenic cloud seeding, to investigate ice growth rates within natural clouds. Seeding experiments were conducted in supercooled stratus clouds (at −8 to −5 °C) using an uncrewed aerial vehicle, and the created ice crystals were measured 4-10 min downwind by in situ and ground-based remote sensing instrumentation. We observed substantial variability in ice crystal growth rates within natural clouds, attributed to variations in ice crystal number concentrations and in the supersaturation, which is difficult to reproduce in the laboratory and which implies faster precipitation initiation than previously thought. We found that for the experiments conducted at −5.2 °C, the ice crystal populations grew nearly linearly during the time interval from 6 to 10 minutes. Our results demonstrate that the targeted use of weather modification techniques can be employed for fundamental cloud research (e.g., ice growth processes, aerosol-cloud interactions), helping to advance cloud microphysics parameterizations and to improve weather forecasts and climate projections.