{"title":"基于测量反馈的一般量子经典动力学","authors":"Antoine Tilloy","doi":"10.21468/scipostphys.17.3.083","DOIUrl":null,"url":null,"abstract":"This note derives the stochastic differential equations and partial differential equation of general hybrid quantum--classical dynamics from the theory of continuous measurement and general (non-Markovian) feedback. The advantage of this approach is an explicit parameterization, without additional positivity constraints. The construction also neatly separates the different effects: how the quantum influences the classical and how the classical influences the quantum. This modular presentation gives a better intuition of what to expect from hybrid dynamics, especially when used to construct possibly fundamental theories.","PeriodicalId":21682,"journal":{"name":"SciPost Physics","volume":"11 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General quantum-classical dynamics as measurement based feedback\",\"authors\":\"Antoine Tilloy\",\"doi\":\"10.21468/scipostphys.17.3.083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note derives the stochastic differential equations and partial differential equation of general hybrid quantum--classical dynamics from the theory of continuous measurement and general (non-Markovian) feedback. The advantage of this approach is an explicit parameterization, without additional positivity constraints. The construction also neatly separates the different effects: how the quantum influences the classical and how the classical influences the quantum. This modular presentation gives a better intuition of what to expect from hybrid dynamics, especially when used to construct possibly fundamental theories.\",\"PeriodicalId\":21682,\"journal\":{\"name\":\"SciPost Physics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SciPost Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.21468/scipostphys.17.3.083\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.21468/scipostphys.17.3.083","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
General quantum-classical dynamics as measurement based feedback
This note derives the stochastic differential equations and partial differential equation of general hybrid quantum--classical dynamics from the theory of continuous measurement and general (non-Markovian) feedback. The advantage of this approach is an explicit parameterization, without additional positivity constraints. The construction also neatly separates the different effects: how the quantum influences the classical and how the classical influences the quantum. This modular presentation gives a better intuition of what to expect from hybrid dynamics, especially when used to construct possibly fundamental theories.