Zinsou Max Debaly, Michael H. Neumann, Lionel Truquet
{"title":"非稳态多变量计数过程的混合特性","authors":"Zinsou Max Debaly, Michael H. Neumann, Lionel Truquet","doi":"10.1111/jtsa.12775","DOIUrl":null,"url":null,"abstract":"We consider multi‐variate versions of two popular classes of integer‐valued processes. While the transition mechanism is time‐homogeneous, a possible non‐stationarity is introduced by an exogeneous covariate process. We prove absolute regularity (‐mixing) for the count process with exponentially decaying mixing coefficients. The proof of this result makes use of some sort of contraction in the transition mechanism which allows a coupling of two versions of the count process such that they eventually coalesce. We show how this result can be used to prove asymptotic normality of a least squares estimator of an involved model parameter.","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"3 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixing properties of non‐stationary multi‐variate count processes\",\"authors\":\"Zinsou Max Debaly, Michael H. Neumann, Lionel Truquet\",\"doi\":\"10.1111/jtsa.12775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider multi‐variate versions of two popular classes of integer‐valued processes. While the transition mechanism is time‐homogeneous, a possible non‐stationarity is introduced by an exogeneous covariate process. We prove absolute regularity (‐mixing) for the count process with exponentially decaying mixing coefficients. The proof of this result makes use of some sort of contraction in the transition mechanism which allows a coupling of two versions of the count process such that they eventually coalesce. We show how this result can be used to prove asymptotic normality of a least squares estimator of an involved model parameter.\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/jtsa.12775\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12775","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Mixing properties of non‐stationary multi‐variate count processes
We consider multi‐variate versions of two popular classes of integer‐valued processes. While the transition mechanism is time‐homogeneous, a possible non‐stationarity is introduced by an exogeneous covariate process. We prove absolute regularity (‐mixing) for the count process with exponentially decaying mixing coefficients. The proof of this result makes use of some sort of contraction in the transition mechanism which allows a coupling of two versions of the count process such that they eventually coalesce. We show how this result can be used to prove asymptotic normality of a least squares estimator of an involved model parameter.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.