无性曲面中的热带曲线 I:通过点的曲线枚举

IF 0.6 3区 数学 Q3 MATHEMATICS
THOMAS BLOMME
{"title":"无性曲面中的热带曲线 I:通过点的曲线枚举","authors":"THOMAS BLOMME","doi":"10.1017/s0305004124000161","DOIUrl":null,"url":null,"abstract":"<p>This paper is the first part in a series of three papers devoted to the study of enumerative invariants of abelian surfaces through the tropical approach. In this paper, we consider the enumeration of genus <span>g</span> curves of fixed degree passing through <span>g</span> points. We compute the tropical multiplicity provided by a correspondence theorem due to T. Nishinou and show that it is possible to refine this multiplicity in the style of the Block–Göttsche refined multiplicity to get tropical refined invariants.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tropical curves in abelian surfaces I: enumeration of curves passing through points\",\"authors\":\"THOMAS BLOMME\",\"doi\":\"10.1017/s0305004124000161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is the first part in a series of three papers devoted to the study of enumerative invariants of abelian surfaces through the tropical approach. In this paper, we consider the enumeration of genus <span>g</span> curves of fixed degree passing through <span>g</span> points. We compute the tropical multiplicity provided by a correspondence theorem due to T. Nishinou and show that it is possible to refine this multiplicity in the style of the Block–Göttsche refined multiplicity to get tropical refined invariants.</p>\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000161\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000161","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文是通过热带方法研究无性曲面枚举不变式的系列论文的第一部分。在本文中,我们考虑枚举通过 g 个点的固定阶数的 g 属曲线。我们计算了由 T. Nishinou 提出的对应定理所提供的热带多重性,并证明可以按照 Block-Göttsche 精炼多重性的方式对这一多重性进行精炼,从而得到热带精炼不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tropical curves in abelian surfaces I: enumeration of curves passing through points

This paper is the first part in a series of three papers devoted to the study of enumerative invariants of abelian surfaces through the tropical approach. In this paper, we consider the enumeration of genus g curves of fixed degree passing through g points. We compute the tropical multiplicity provided by a correspondence theorem due to T. Nishinou and show that it is possible to refine this multiplicity in the style of the Block–Göttsche refined multiplicity to get tropical refined invariants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信