有理值模近似有限生成群的乘法依赖性

IF 0.6 3区 数学 Q3 MATHEMATICS
ATTILA BÉRCZES, YANN BUGEAUD, KÁLMÁN GYŐRY, JORGE MELLO, ALINA OSTAFE, MIN SHA
{"title":"有理值模近似有限生成群的乘法依赖性","authors":"ATTILA BÉRCZES, YANN BUGEAUD, KÁLMÁN GYŐRY, JORGE MELLO, ALINA OSTAFE, MIN SHA","doi":"10.1017/s0305004124000173","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are ‘close’ (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number field <span>K</span>. For example, we show that under some conditions on rational functions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918084446080-0836:S0305004124000173:S0305004124000173_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$f_1, \\ldots, f_n\\in K(X)$</span></span></img></span></span>, there are only finitely many elements <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918084446080-0836:S0305004124000173:S0305004124000173_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\alpha \\in K$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918084446080-0836:S0305004124000173:S0305004124000173_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$f_1(\\alpha),\\ldots,f_n(\\alpha)$</span></span></img></span></span> are multiplicatively dependent modulo such sets.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"10 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicative dependence of rational values modulo approximate finitely generated groups\",\"authors\":\"ATTILA BÉRCZES, YANN BUGEAUD, KÁLMÁN GYŐRY, JORGE MELLO, ALINA OSTAFE, MIN SHA\",\"doi\":\"10.1017/s0305004124000173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are ‘close’ (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number field <span>K</span>. For example, we show that under some conditions on rational functions <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918084446080-0836:S0305004124000173:S0305004124000173_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f_1, \\\\ldots, f_n\\\\in K(X)$</span></span></img></span></span>, there are only finitely many elements <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918084446080-0836:S0305004124000173:S0305004124000173_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha \\\\in K$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918084446080-0836:S0305004124000173:S0305004124000173_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$f_1(\\\\alpha),\\\\ldots,f_n(\\\\alpha)$</span></span></img></span></span> are multiplicatively dependent modulo such sets.</p>\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000173\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000173","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了一些关于有理值模数集乘法依赖性的有限性结果,这些有理值模数集 "接近"(关于魏尔高度)数域 K 的有限生成乘法群的除法群。例如,我们证明了在有理函数 $f_1,\ldots,f_n/in K(X)$ 的某些条件下,K$ 中只有有限多个元素 $alpha \inK$使得 $f_1(\alpha),\ldots,f_n(\alpha)$ 与这些集合具有乘法依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiplicative dependence of rational values modulo approximate finitely generated groups

In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are ‘close’ (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number field K. For example, we show that under some conditions on rational functions $f_1, \ldots, f_n\in K(X)$, there are only finitely many elements $\alpha \in K$ such that $f_1(\alpha),\ldots,f_n(\alpha)$ are multiplicatively dependent modulo such sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信