椭圆曲线 p 塞尔默群的伽罗瓦后裔失效

IF 0.6 3区 数学 Q3 MATHEMATICS
ROSS PATERSON
{"title":"椭圆曲线 p 塞尔默群的伽罗瓦后裔失效","authors":"ROSS PATERSON","doi":"10.1017/s0305004124000197","DOIUrl":null,"url":null,"abstract":"<p>We show that if <span>F</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb{Q}$</span></span></img></span></span> or a multiquadratic number field, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$p\\in\\left\\{{2,3,5}\\right\\}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K/F$</span></span></img></span></span> is a Galois extension of degree a power of <span>p</span>, then for elliptic curves <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$E/\\mathbb{Q}$</span></span></img></span></span> ordered by height, the average dimension of the <span>p</span>-Selmer groups of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E/K$</span></span></img></span></span> is bounded. In particular, this provides a bound for the average <span>K</span>-rank of elliptic curves <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E/\\mathbb{Q}$</span></span></img></span></span> for such <span>K</span>. Additionally, we give bounds for certain representation–theoretic invariants of Mordell–Weil groups over Galois extensions of such <span>F</span>.</p><p>The central result is that: for each finite Galois extension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$K/F$</span></span></img></span></span> of number fields and prime number <span>p</span>, as <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline8.png\"/><span data-mathjax-type=\"texmath\"><span>$E/\\mathbb{Q}$</span></span></span></span> varies, the difference in dimension between the Galois fixed space in the <span>p</span>-Selmer group of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline9.png\"/><span data-mathjax-type=\"texmath\"><span>$E/K$</span></span></span></span> and the <span>p</span>-Selmer group of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$E/F$</span></span></span></span> has bounded average.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Failure of Galois Descent for p-Selmer Groups of Elliptic Curves\",\"authors\":\"ROSS PATERSON\",\"doi\":\"10.1017/s0305004124000197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that if <span>F</span> is <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb{Q}$</span></span></img></span></span> or a multiquadratic number field, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p\\\\in\\\\left\\\\{{2,3,5}\\\\right\\\\}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K/F$</span></span></img></span></span> is a Galois extension of degree a power of <span>p</span>, then for elliptic curves <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E/\\\\mathbb{Q}$</span></span></img></span></span> ordered by height, the average dimension of the <span>p</span>-Selmer groups of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E/K$</span></span></img></span></span> is bounded. In particular, this provides a bound for the average <span>K</span>-rank of elliptic curves <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$E/\\\\mathbb{Q}$</span></span></img></span></span> for such <span>K</span>. Additionally, we give bounds for certain representation–theoretic invariants of Mordell–Weil groups over Galois extensions of such <span>F</span>.</p><p>The central result is that: for each finite Galois extension <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K/F$</span></span></img></span></span> of number fields and prime number <span>p</span>, as <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline8.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$E/\\\\mathbb{Q}$</span></span></span></span> varies, the difference in dimension between the Galois fixed space in the <span>p</span>-Selmer group of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline9.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$E/K$</span></span></span></span> and the <span>p</span>-Selmer group of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240918140027897-0543:S0305004124000197:S0305004124000197_inline10.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$E/F$</span></span></span></span> has bounded average.</p>\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000197\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000197","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 F 是 $\mathbb{Q}$ 或一个多二次数域,$p\in\left\{2,3,5}\right\}$ 并且 $K/F$ 是 p 的幂级数的伽罗瓦扩展,那么对于按高度排序的椭圆曲线 $E/\mathbb{Q}$,$E/K$ 的 p-Selmer 群的平均维度是有界的。此外,我们还给出了这种 F 的伽罗瓦扩展上的莫德尔-韦尔群的某些表示论不变式的边界。核心结果是:对于数域和素数 p 的每个有限伽罗瓦扩展 $K/F$,随着 $E/\mathbb{Q}$ 的变化,$E/K$ 的 p 塞尔默群和 $E/F$ 的 p 塞尔默群的伽罗瓦固定空间维数之差具有有界平均数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Failure of Galois Descent for p-Selmer Groups of Elliptic Curves

We show that if F is $\mathbb{Q}$ or a multiquadratic number field, $p\in\left\{{2,3,5}\right\}$, and $K/F$ is a Galois extension of degree a power of p, then for elliptic curves $E/\mathbb{Q}$ ordered by height, the average dimension of the p-Selmer groups of $E/K$ is bounded. In particular, this provides a bound for the average K-rank of elliptic curves $E/\mathbb{Q}$ for such K. Additionally, we give bounds for certain representation–theoretic invariants of Mordell–Weil groups over Galois extensions of such F.

The central result is that: for each finite Galois extension $K/F$ of number fields and prime number p, as $E/\mathbb{Q}$ varies, the difference in dimension between the Galois fixed space in the p-Selmer group of $E/K$ and the p-Selmer group of $E/F$ has bounded average.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信