论线性系统在可加可幂半环上的解

IF 2.3 3区 数学 Q1 MATHEMATICS
Mathematics Pub Date : 2024-09-18 DOI:10.3390/math12182904
Álvaro Otero Sánchez, Daniel Camazón Portela, Juan Antonio López-Ramos
{"title":"论线性系统在可加可幂半环上的解","authors":"Álvaro Otero Sánchez, Daniel Camazón Portela, Juan Antonio López-Ramos","doi":"10.3390/math12182904","DOIUrl":null,"url":null,"abstract":"The aim of this article is to solve the system XA=Y, where A=(ai,j)∈Mn×m(S), Y∈Sm and X is an unknown vector of a size n, with S being an additively idempotent semiring. If the system has solutions, then we completely characterize its maximal one, and in the particular case where S is a generalized tropical semiring, a complete characterization of its solutions is provided as well as an explicit bound of the computational cost associated with its computation. Finally, we show how to apply this method to cryptanalyze two different key exchange protocols defined for a finite case and the tropical semiring, respectively.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"5 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Solutions of Linear Systems over Additively Idempotent Semirings\",\"authors\":\"Álvaro Otero Sánchez, Daniel Camazón Portela, Juan Antonio López-Ramos\",\"doi\":\"10.3390/math12182904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article is to solve the system XA=Y, where A=(ai,j)∈Mn×m(S), Y∈Sm and X is an unknown vector of a size n, with S being an additively idempotent semiring. If the system has solutions, then we completely characterize its maximal one, and in the particular case where S is a generalized tropical semiring, a complete characterization of its solutions is provided as well as an explicit bound of the computational cost associated with its computation. Finally, we show how to apply this method to cryptanalyze two different key exchange protocols defined for a finite case and the tropical semiring, respectively.\",\"PeriodicalId\":18303,\"journal\":{\"name\":\"Mathematics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182904\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182904","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是求解系统 XA=Y,其中 A=(ai,j)∈Mn×m(S),Y∈Sm,X 是一个大小为 n 的未知向量,S 是一个可加可幂半iring。如果系统有解,那么我们就能完全描述其最大解,而在 S 是广义热带配线的特殊情况下,我们就能提供其解的完整描述,以及与其计算相关的计算成本的明确约束。最后,我们展示了如何应用这种方法对分别为有限情况和热带配子定义的两种不同密钥交换协议进行加密分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Solutions of Linear Systems over Additively Idempotent Semirings
The aim of this article is to solve the system XA=Y, where A=(ai,j)∈Mn×m(S), Y∈Sm and X is an unknown vector of a size n, with S being an additively idempotent semiring. If the system has solutions, then we completely characterize its maximal one, and in the particular case where S is a generalized tropical semiring, a complete characterization of its solutions is provided as well as an explicit bound of the computational cost associated with its computation. Finally, we show how to apply this method to cryptanalyze two different key exchange protocols defined for a finite case and the tropical semiring, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信