平面域的哈代数和伯格曼数相等

Dimitrios Betsakos, Francisco J. Cruz-Zamorano
{"title":"平面域的哈代数和伯格曼数相等","authors":"Dimitrios Betsakos, Francisco J. Cruz-Zamorano","doi":"arxiv-2409.09150","DOIUrl":null,"url":null,"abstract":"This article deals with functions with a prefixed range and their inclusion\nin Hardy and weighted Bergman spaces. This idea was originally introduced by\nHansen for Hardy spaces, and it was recently taken into weighted Bergman spaces\nby Karafyllia and Karamanlis. In particular, we improve a theorem of Karafyllia\nshowing that the Hardy and Bergman numbers of any given domain coincide, that\nis, the Hardy and weighted Bergman spaces to which a function with prefixed\nrange belongs can be related. The main tools in the proofs are the Green\nfunction of the domain and its universal covering map.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Hardy number and the Bergman number of a planar domain are equal\",\"authors\":\"Dimitrios Betsakos, Francisco J. Cruz-Zamorano\",\"doi\":\"arxiv-2409.09150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with functions with a prefixed range and their inclusion\\nin Hardy and weighted Bergman spaces. This idea was originally introduced by\\nHansen for Hardy spaces, and it was recently taken into weighted Bergman spaces\\nby Karafyllia and Karamanlis. In particular, we improve a theorem of Karafyllia\\nshowing that the Hardy and Bergman numbers of any given domain coincide, that\\nis, the Hardy and weighted Bergman spaces to which a function with prefixed\\nrange belongs can be related. The main tools in the proofs are the Green\\nfunction of the domain and its universal covering map.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论具有前缀范围的函数及其在哈代和加权伯格曼空间中的包含。这一思想最初是由汉森在哈代空间中提出的,最近被卡拉菲利亚和卡拉曼利斯引入了加权伯格曼空间。特别是,我们改进了卡拉菲利亚的一个定理,指出任何给定域的哈代数和伯格曼数是重合的,也就是说,带前缀范围的函数所属的哈代空间和加权伯格曼空间是相关的。证明的主要工具是域的格林函数及其通用覆盖图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Hardy number and the Bergman number of a planar domain are equal
This article deals with functions with a prefixed range and their inclusion in Hardy and weighted Bergman spaces. This idea was originally introduced by Hansen for Hardy spaces, and it was recently taken into weighted Bergman spaces by Karafyllia and Karamanlis. In particular, we improve a theorem of Karafyllia showing that the Hardy and Bergman numbers of any given domain coincide, that is, the Hardy and weighted Bergman spaces to which a function with prefixed range belongs can be related. The main tools in the proofs are the Green function of the domain and its universal covering map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信