巴拿赫代数双元上的正交可加多项式

Aminallah Khosravi, Hamid Reza Ebrahimi Vishki, Ramin Faal
{"title":"巴拿赫代数双元上的正交可加多项式","authors":"Aminallah Khosravi, Hamid Reza Ebrahimi Vishki, Ramin Faal","doi":"arxiv-2409.09711","DOIUrl":null,"url":null,"abstract":"We say that a Banach algebra A has $k$-orthogonally additive property ($k$-OA\nproperty, for short) if every orthogonally additive k-homogeneous polynomial\n$P:\\mathcal{A}\\to \\mathbb{C}$ can be expressed in the standard form\n$P(x)=\\langle \\gamma,x^k\\rangle$, $(x\\in \\mathcal{A})$, for some $\\gamma\\in\n\\mathcal{A}^*$. In this paper we first investigate the extensions of a\n$k$-homogeneous polynomial from $\\mathcal{A}$ to the bidual $\\mathcal{A}^{**}$;\nequipped with the first Arens product. We then study the relationship between\n$k$-OA properties of $\\mathcal{A}$ and $\\mathcal{A}^{**}$: This relation is\nspecially investigated for a dual Banach algebra. Finally we examine our\nresults for the dual Banach algebra $\\ell^{1}$, with pointwise product, and we\nshow that the Banach algebra $(\\ell^{1})^{**}$ enjoys k-OA property.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonally additive polynomials on the bidual of Banach algebras\",\"authors\":\"Aminallah Khosravi, Hamid Reza Ebrahimi Vishki, Ramin Faal\",\"doi\":\"arxiv-2409.09711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We say that a Banach algebra A has $k$-orthogonally additive property ($k$-OA\\nproperty, for short) if every orthogonally additive k-homogeneous polynomial\\n$P:\\\\mathcal{A}\\\\to \\\\mathbb{C}$ can be expressed in the standard form\\n$P(x)=\\\\langle \\\\gamma,x^k\\\\rangle$, $(x\\\\in \\\\mathcal{A})$, for some $\\\\gamma\\\\in\\n\\\\mathcal{A}^*$. In this paper we first investigate the extensions of a\\n$k$-homogeneous polynomial from $\\\\mathcal{A}$ to the bidual $\\\\mathcal{A}^{**}$;\\nequipped with the first Arens product. We then study the relationship between\\n$k$-OA properties of $\\\\mathcal{A}$ and $\\\\mathcal{A}^{**}$: This relation is\\nspecially investigated for a dual Banach algebra. Finally we examine our\\nresults for the dual Banach algebra $\\\\ell^{1}$, with pointwise product, and we\\nshow that the Banach algebra $(\\\\ell^{1})^{**}$ enjoys k-OA property.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果每一个正交可加 k 同调多项式$P:\到 \mathbb{C}$ 可以用标准形式$P(x)=\langle \gamma,x^k\rangle$, $(x\in \mathcal{A})$表示,对于某个$\gamma\in\mathcal{A}^*$。本文首先研究了$k$同次多项式从$\mathcal{A}$到双元$\mathcal{A}^{**}$的扩展;配备了第一阿伦积。然后,我们研究 $\mathcal{A}$ 和 $\mathcal{A}^{**}$ 的 $k$-OA 性质之间的关系:我们特别针对对偶巴拿赫代数研究了这种关系。最后,我们检验了带点乘的对偶巴拿赫代数 $\ell^{1}$ 的结果,并证明巴拿赫代数 $(\ell^{1})^{**}$ 具有 k-OA 性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonally additive polynomials on the bidual of Banach algebras
We say that a Banach algebra A has $k$-orthogonally additive property ($k$-OA property, for short) if every orthogonally additive k-homogeneous polynomial $P:\mathcal{A}\to \mathbb{C}$ can be expressed in the standard form $P(x)=\langle \gamma,x^k\rangle$, $(x\in \mathcal{A})$, for some $\gamma\in \mathcal{A}^*$. In this paper we first investigate the extensions of a $k$-homogeneous polynomial from $\mathcal{A}$ to the bidual $\mathcal{A}^{**}$; equipped with the first Arens product. We then study the relationship between $k$-OA properties of $\mathcal{A}$ and $\mathcal{A}^{**}$: This relation is specially investigated for a dual Banach algebra. Finally we examine our results for the dual Banach algebra $\ell^{1}$, with pointwise product, and we show that the Banach algebra $(\ell^{1})^{**}$ enjoys k-OA property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信