商域上的收缩希尔伯特模块

Shibananda Biswas, Gargi Ghosh, E. K. Narayanan, Subrata Shyam Roy
{"title":"商域上的收缩希尔伯特模块","authors":"Shibananda Biswas, Gargi Ghosh, E. K. Narayanan, Subrata Shyam Roy","doi":"arxiv-2409.11101","DOIUrl":null,"url":null,"abstract":"Let the complex reflection group $G(m,p,n)$ act on the unit polydisc $\\mathbb\nD^n$ in $\\mathbb C^n.$ A $\\boldsymbol\\Theta_n$-contraction is a commuting tuple\nof operators on a Hilbert space having\n$$\\overline{\\boldsymbol\\Theta}_n:=\\{\\boldsymbol\\theta(z)=(\\theta_1(z),\\ldots,\\theta_n(z)):z\\in\\overline{\\mathbb\nD}^n\\}$$ as a spectral set, where $\\{\\theta_i\\}_{i=1}^n$ is a homogeneous\nsystem of parameters associated to $G(m,p,n).$ A plethora of examples of\n$\\boldsymbol\\Theta_n$-contractions is exhibited. Under a mild hypothesis, it is\nshown that these $\\boldsymbol\\Theta_n$-contractions are mutually unitarily\ninequivalent. These inequivalence results are obtained concretely for the\nweighted Bergman modules under the action of the permutation groups and the\ndihedral groups. The division problem is shown to have negative answers for the\nHardy module and the Bergman module on the bidisc. A Beurling-Lax-Halmos type\nrepresentation for the invariant subspaces of $\\boldsymbol\\Theta_n$-isometries\nis obtained.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"191 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contractive Hilbert modules on quotient domains\",\"authors\":\"Shibananda Biswas, Gargi Ghosh, E. K. Narayanan, Subrata Shyam Roy\",\"doi\":\"arxiv-2409.11101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let the complex reflection group $G(m,p,n)$ act on the unit polydisc $\\\\mathbb\\nD^n$ in $\\\\mathbb C^n.$ A $\\\\boldsymbol\\\\Theta_n$-contraction is a commuting tuple\\nof operators on a Hilbert space having\\n$$\\\\overline{\\\\boldsymbol\\\\Theta}_n:=\\\\{\\\\boldsymbol\\\\theta(z)=(\\\\theta_1(z),\\\\ldots,\\\\theta_n(z)):z\\\\in\\\\overline{\\\\mathbb\\nD}^n\\\\}$$ as a spectral set, where $\\\\{\\\\theta_i\\\\}_{i=1}^n$ is a homogeneous\\nsystem of parameters associated to $G(m,p,n).$ A plethora of examples of\\n$\\\\boldsymbol\\\\Theta_n$-contractions is exhibited. Under a mild hypothesis, it is\\nshown that these $\\\\boldsymbol\\\\Theta_n$-contractions are mutually unitarily\\ninequivalent. These inequivalence results are obtained concretely for the\\nweighted Bergman modules under the action of the permutation groups and the\\ndihedral groups. The division problem is shown to have negative answers for the\\nHardy module and the Bergman module on the bidisc. A Beurling-Lax-Halmos type\\nrepresentation for the invariant subspaces of $\\\\boldsymbol\\\\Theta_n$-isometries\\nis obtained.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让复反射群 $G(m,p,n)$ 作用于 $\mathbb C^n 中的单位多圆盘 $/mathbbD^n$。一个 $\boldsymbol\Theta_n$-contraction 是一个希尔伯特空间上的换元组算子,具有$$overline{\boldsymbol\Theta}_n:=\{\boldsymbol\theta(z)=(\theta_1(z),\ldots,\theta_n(z)):其中 $\{theta_i\}_{i=1}^n$ 是与 $G(m,p,n)相关的参数同质系统。${theta_i\}_{i=1}^n$是与$G(m,p,n)相关的同质参数系统。在一个温和的假设下,证明了这些$\boldsymbol\Theta_n$-contractions是相互等价的。这些不等价结果是在置换群和二面体群作用下的加权伯格曼模块中具体得到的。除法问题证明了哈代模块和伯格曼模块在二面性上的负答案。得到了 $\boldsymbol\Theta_n$-isometries 的不变子空间的 Beurling-Lax-Halmos 类型表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contractive Hilbert modules on quotient domains
Let the complex reflection group $G(m,p,n)$ act on the unit polydisc $\mathbb D^n$ in $\mathbb C^n.$ A $\boldsymbol\Theta_n$-contraction is a commuting tuple of operators on a Hilbert space having $$\overline{\boldsymbol\Theta}_n:=\{\boldsymbol\theta(z)=(\theta_1(z),\ldots,\theta_n(z)):z\in\overline{\mathbb D}^n\}$$ as a spectral set, where $\{\theta_i\}_{i=1}^n$ is a homogeneous system of parameters associated to $G(m,p,n).$ A plethora of examples of $\boldsymbol\Theta_n$-contractions is exhibited. Under a mild hypothesis, it is shown that these $\boldsymbol\Theta_n$-contractions are mutually unitarily inequivalent. These inequivalence results are obtained concretely for the weighted Bergman modules under the action of the permutation groups and the dihedral groups. The division problem is shown to have negative answers for the Hardy module and the Bergman module on the bidisc. A Beurling-Lax-Halmos type representation for the invariant subspaces of $\boldsymbol\Theta_n$-isometries is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信