论再现核希尔伯特空间中的概率逼近

Dongwei Chen, Kai-Hsiang Wang
{"title":"论再现核希尔伯特空间中的概率逼近","authors":"Dongwei Chen, Kai-Hsiang Wang","doi":"arxiv-2409.11679","DOIUrl":null,"url":null,"abstract":"This paper generalizes the least square method to probabilistic approximation\nin reproducing kernel Hilbert spaces. We show the existence and uniqueness of\nthe optimizer. Furthermore, we generalize the celebrated representer theorem in\nthis setting, and especially when the probability measure is finitely\nsupported, or the Hilbert space is finite-dimensional, we show that the\napproximation problem turns out to be a measure quantization problem. Some\ndiscussions and examples are also given when the space is infinite-dimensional\nand the measure is infinitely supported.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Probabilistic Approximation in Reproducing Kernel Hilbert Spaces\",\"authors\":\"Dongwei Chen, Kai-Hsiang Wang\",\"doi\":\"arxiv-2409.11679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper generalizes the least square method to probabilistic approximation\\nin reproducing kernel Hilbert spaces. We show the existence and uniqueness of\\nthe optimizer. Furthermore, we generalize the celebrated representer theorem in\\nthis setting, and especially when the probability measure is finitely\\nsupported, or the Hilbert space is finite-dimensional, we show that the\\napproximation problem turns out to be a measure quantization problem. Some\\ndiscussions and examples are also given when the space is infinite-dimensional\\nand the measure is infinitely supported.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将最小平方法推广到再现核希尔伯特空间中的概率逼近。我们证明了优化器的存在性和唯一性。此外,我们还在此背景下推广了著名的代表者定理,特别是当概率度量是有限支持的,或希尔伯特空间是有限维的时候,我们证明逼近问题变成了度量量化问题。当空间为无限维且度量为无限支持时,我们也给出了一些讨论和例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Probabilistic Approximation in Reproducing Kernel Hilbert Spaces
This paper generalizes the least square method to probabilistic approximation in reproducing kernel Hilbert spaces. We show the existence and uniqueness of the optimizer. Furthermore, we generalize the celebrated representer theorem in this setting, and especially when the probability measure is finitely supported, or the Hilbert space is finite-dimensional, we show that the approximation problem turns out to be a measure quantization problem. Some discussions and examples are also given when the space is infinite-dimensional and the measure is infinitely supported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信