Z. Váci , P.M. Kruttasch , M.J. Krawczynski , R.C. Ogliore , K. Mezger
{"title":"硫化物熔体的冲击渗滤作用在超基性闪长岩中形成共闪长岩","authors":"Z. Váci , P.M. Kruttasch , M.J. Krawczynski , R.C. Ogliore , K. Mezger","doi":"10.1016/j.gca.2024.08.011","DOIUrl":null,"url":null,"abstract":"<div><div>The ungrouped dunitic achondrite Northwest Africa (NWA) 12217 contains symplectic spinel-pyroxene veins that are mineralogically identical to symplectites in other ultramafic planetary materials. The morphology and amount of chromite present in these features relative to the Cr in their olivine hosts suggest an exogenous origin. Petrological experiments show that a Cr laden sulfide liquid reacts with olivine to produce pyroxene by scavenging Mg and Fe from olivine to crystallize chromite. The liquid infiltrates cracks and grain boundaries within the olivine and produces a vein-like symplectic chromite-pyroxene mineralogy similar to that observed in NWA 12217. This process is likely responsible for forming the symplectites in the related ultramafic achondrites NWA 12319, 12562, and 13954, along with many other achondrites. The nucleosynthetic Cr isotopic composition of chromites appears to be in disequilibrium with that of silicates in NWA 12217, suggesting that the liquids responsible for the symplectite forming reaction are at least partially sourced from a different parent body and result from an impact.</div></div>","PeriodicalId":327,"journal":{"name":"Geochimica et Cosmochimica Acta","volume":"386 ","pages":"Pages 33-47"},"PeriodicalIF":4.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symplectite formation in ultramafic achondrites by impact percolation of a sulfide melt\",\"authors\":\"Z. Váci , P.M. Kruttasch , M.J. Krawczynski , R.C. Ogliore , K. Mezger\",\"doi\":\"10.1016/j.gca.2024.08.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ungrouped dunitic achondrite Northwest Africa (NWA) 12217 contains symplectic spinel-pyroxene veins that are mineralogically identical to symplectites in other ultramafic planetary materials. The morphology and amount of chromite present in these features relative to the Cr in their olivine hosts suggest an exogenous origin. Petrological experiments show that a Cr laden sulfide liquid reacts with olivine to produce pyroxene by scavenging Mg and Fe from olivine to crystallize chromite. The liquid infiltrates cracks and grain boundaries within the olivine and produces a vein-like symplectic chromite-pyroxene mineralogy similar to that observed in NWA 12217. This process is likely responsible for forming the symplectites in the related ultramafic achondrites NWA 12319, 12562, and 13954, along with many other achondrites. The nucleosynthetic Cr isotopic composition of chromites appears to be in disequilibrium with that of silicates in NWA 12217, suggesting that the liquids responsible for the symplectite forming reaction are at least partially sourced from a different parent body and result from an impact.</div></div>\",\"PeriodicalId\":327,\"journal\":{\"name\":\"Geochimica et Cosmochimica Acta\",\"volume\":\"386 \",\"pages\":\"Pages 33-47\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochimica et Cosmochimica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001670372400406X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochimica et Cosmochimica Acta","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670372400406X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Symplectite formation in ultramafic achondrites by impact percolation of a sulfide melt
The ungrouped dunitic achondrite Northwest Africa (NWA) 12217 contains symplectic spinel-pyroxene veins that are mineralogically identical to symplectites in other ultramafic planetary materials. The morphology and amount of chromite present in these features relative to the Cr in their olivine hosts suggest an exogenous origin. Petrological experiments show that a Cr laden sulfide liquid reacts with olivine to produce pyroxene by scavenging Mg and Fe from olivine to crystallize chromite. The liquid infiltrates cracks and grain boundaries within the olivine and produces a vein-like symplectic chromite-pyroxene mineralogy similar to that observed in NWA 12217. This process is likely responsible for forming the symplectites in the related ultramafic achondrites NWA 12319, 12562, and 13954, along with many other achondrites. The nucleosynthetic Cr isotopic composition of chromites appears to be in disequilibrium with that of silicates in NWA 12217, suggesting that the liquids responsible for the symplectite forming reaction are at least partially sourced from a different parent body and result from an impact.
期刊介绍:
Geochimica et Cosmochimica Acta publishes research papers in a wide range of subjects in terrestrial geochemistry, meteoritics, and planetary geochemistry. The scope of the journal includes:
1). Physical chemistry of gases, aqueous solutions, glasses, and crystalline solids
2). Igneous and metamorphic petrology
3). Chemical processes in the atmosphere, hydrosphere, biosphere, and lithosphere of the Earth
4). Organic geochemistry
5). Isotope geochemistry
6). Meteoritics and meteorite impacts
7). Lunar science; and
8). Planetary geochemistry.