Ching Lee, Jeanne Tan, Jun Jong Tan, Hiu Ting Tang, Wing Shan Yu, Ngan Yi Kitty Lam
{"title":"整合人工智能,实现最佳热舒适度:符合用户偏好的电热织物设计方法","authors":"Ching Lee, Jeanne Tan, Jun Jong Tan, Hiu Ting Tang, Wing Shan Yu, Ngan Yi Kitty Lam","doi":"10.1177/00405175241275620","DOIUrl":null,"url":null,"abstract":"Human thermal comfort, crucial for well-being and productivity, is often improved by personal comfort systems that offer tailored control over environmental conditions while promoting energy efficiency. Previous studies have explored various textile technologies in thermoregulation systems according to user preferences. However, limited research has focused on temperature prediction by artificial intelligence to maximize thermal comfort for varied users. This study proposes a design approach to optimize thermal comfort in electric heating textiles using artificial intelligence, considering user preferences related to age and gender differences. A fuzzy logic model is established as a proof of concept for temperature regulation by varying ambient temperature, followed by developing an artificial neural network model to predict the optimal temperature for maximum comfort. Subsequently, a smart electric heating jacket is fabricated to assess preferred heating temperatures among 50 subjects with varying ages and genders. Results from the artificial neural network model show promising temperature prediction, while subject tests reveal significant differences in skin temperatures based on gender. This emphasizes the need for artificial intelligence-based heating e-textiles to accommodate diverse user needs. The study’s findings are expected to contribute to intelligent temperature regulation in thermal textiles and wearables, benefitting both the industry and consumers through customized heating products.","PeriodicalId":22323,"journal":{"name":"Textile Research Journal","volume":"49 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating artificial intelligence for optimal thermal comfort: A design approach for electric heating textiles aligned with user preferences\",\"authors\":\"Ching Lee, Jeanne Tan, Jun Jong Tan, Hiu Ting Tang, Wing Shan Yu, Ngan Yi Kitty Lam\",\"doi\":\"10.1177/00405175241275620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human thermal comfort, crucial for well-being and productivity, is often improved by personal comfort systems that offer tailored control over environmental conditions while promoting energy efficiency. Previous studies have explored various textile technologies in thermoregulation systems according to user preferences. However, limited research has focused on temperature prediction by artificial intelligence to maximize thermal comfort for varied users. This study proposes a design approach to optimize thermal comfort in electric heating textiles using artificial intelligence, considering user preferences related to age and gender differences. A fuzzy logic model is established as a proof of concept for temperature regulation by varying ambient temperature, followed by developing an artificial neural network model to predict the optimal temperature for maximum comfort. Subsequently, a smart electric heating jacket is fabricated to assess preferred heating temperatures among 50 subjects with varying ages and genders. Results from the artificial neural network model show promising temperature prediction, while subject tests reveal significant differences in skin temperatures based on gender. This emphasizes the need for artificial intelligence-based heating e-textiles to accommodate diverse user needs. The study’s findings are expected to contribute to intelligent temperature regulation in thermal textiles and wearables, benefitting both the industry and consumers through customized heating products.\",\"PeriodicalId\":22323,\"journal\":{\"name\":\"Textile Research Journal\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textile Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00405175241275620\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00405175241275620","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Integrating artificial intelligence for optimal thermal comfort: A design approach for electric heating textiles aligned with user preferences
Human thermal comfort, crucial for well-being and productivity, is often improved by personal comfort systems that offer tailored control over environmental conditions while promoting energy efficiency. Previous studies have explored various textile technologies in thermoregulation systems according to user preferences. However, limited research has focused on temperature prediction by artificial intelligence to maximize thermal comfort for varied users. This study proposes a design approach to optimize thermal comfort in electric heating textiles using artificial intelligence, considering user preferences related to age and gender differences. A fuzzy logic model is established as a proof of concept for temperature regulation by varying ambient temperature, followed by developing an artificial neural network model to predict the optimal temperature for maximum comfort. Subsequently, a smart electric heating jacket is fabricated to assess preferred heating temperatures among 50 subjects with varying ages and genders. Results from the artificial neural network model show promising temperature prediction, while subject tests reveal significant differences in skin temperatures based on gender. This emphasizes the need for artificial intelligence-based heating e-textiles to accommodate diverse user needs. The study’s findings are expected to contribute to intelligent temperature regulation in thermal textiles and wearables, benefitting both the industry and consumers through customized heating products.
期刊介绍:
The Textile Research Journal is the leading peer reviewed Journal for textile research. It is devoted to the dissemination of fundamental, theoretical and applied scientific knowledge in materials, chemistry, manufacture and system sciences related to fibers, fibrous assemblies and textiles. The Journal serves authors and subscribers worldwide, and it is selective in accepting contributions on the basis of merit, novelty and originality.