{"title":"深度学习和人工智能在染色、印花和后整理中的应用综述","authors":"Nilesh Ingle, Warren J Jasper","doi":"10.1177/00405175241268619","DOIUrl":null,"url":null,"abstract":"This review focuses on the transformative applications of deep learning and artificial intelligence in textile dyeing, printing, and finishing. In textile dyeing, the topics span color prediction, color-based classification, dyeing recipe prediction, dyeing pattern recognition, and the nuanced domain of color fabric defect detection. In textile printing, applications of artificial intelligence and machine learning center around pattern detection in printed fabrics, the generation of novel patterns, and the critical task of detecting defects in printed textiles. In textile finishing the prediction of fabric thermosetting parameters is discussed. Artificial neural networks, diverse convolutional neural network variations like AlexNet, traditional machine learning approaches including support vector regression, principal component analysis, XGBoost, and generative artificial intelligence such as generative adversarial networks, as well as genetic algorithms all find application in this multifaceted exploration. At its core, the interest to use these methodologies is because of the need to minimize repetitive and time-consuming manual tasks, curtail prototyping costs, and promote process automation. The review unravels a plethora of innovative architectures and frameworks, each tailored to address specific challenges. However, a persistent hurdle looms – the scarcity of data, which remains a significant impediment. While unveiling a collection of research findings, the review also spotlights the inherent challenges in implementing artificial intelligence solutions in the textile dyeing and printing domain.","PeriodicalId":22323,"journal":{"name":"Textile Research Journal","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of deep learning and artificial intelligence in dyeing, printing and finishing\",\"authors\":\"Nilesh Ingle, Warren J Jasper\",\"doi\":\"10.1177/00405175241268619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review focuses on the transformative applications of deep learning and artificial intelligence in textile dyeing, printing, and finishing. In textile dyeing, the topics span color prediction, color-based classification, dyeing recipe prediction, dyeing pattern recognition, and the nuanced domain of color fabric defect detection. In textile printing, applications of artificial intelligence and machine learning center around pattern detection in printed fabrics, the generation of novel patterns, and the critical task of detecting defects in printed textiles. In textile finishing the prediction of fabric thermosetting parameters is discussed. Artificial neural networks, diverse convolutional neural network variations like AlexNet, traditional machine learning approaches including support vector regression, principal component analysis, XGBoost, and generative artificial intelligence such as generative adversarial networks, as well as genetic algorithms all find application in this multifaceted exploration. At its core, the interest to use these methodologies is because of the need to minimize repetitive and time-consuming manual tasks, curtail prototyping costs, and promote process automation. The review unravels a plethora of innovative architectures and frameworks, each tailored to address specific challenges. However, a persistent hurdle looms – the scarcity of data, which remains a significant impediment. While unveiling a collection of research findings, the review also spotlights the inherent challenges in implementing artificial intelligence solutions in the textile dyeing and printing domain.\",\"PeriodicalId\":22323,\"journal\":{\"name\":\"Textile Research Journal\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textile Research Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00405175241268619\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00405175241268619","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
A review of deep learning and artificial intelligence in dyeing, printing and finishing
This review focuses on the transformative applications of deep learning and artificial intelligence in textile dyeing, printing, and finishing. In textile dyeing, the topics span color prediction, color-based classification, dyeing recipe prediction, dyeing pattern recognition, and the nuanced domain of color fabric defect detection. In textile printing, applications of artificial intelligence and machine learning center around pattern detection in printed fabrics, the generation of novel patterns, and the critical task of detecting defects in printed textiles. In textile finishing the prediction of fabric thermosetting parameters is discussed. Artificial neural networks, diverse convolutional neural network variations like AlexNet, traditional machine learning approaches including support vector regression, principal component analysis, XGBoost, and generative artificial intelligence such as generative adversarial networks, as well as genetic algorithms all find application in this multifaceted exploration. At its core, the interest to use these methodologies is because of the need to minimize repetitive and time-consuming manual tasks, curtail prototyping costs, and promote process automation. The review unravels a plethora of innovative architectures and frameworks, each tailored to address specific challenges. However, a persistent hurdle looms – the scarcity of data, which remains a significant impediment. While unveiling a collection of research findings, the review also spotlights the inherent challenges in implementing artificial intelligence solutions in the textile dyeing and printing domain.
期刊介绍:
The Textile Research Journal is the leading peer reviewed Journal for textile research. It is devoted to the dissemination of fundamental, theoretical and applied scientific knowledge in materials, chemistry, manufacture and system sciences related to fibers, fibrous assemblies and textiles. The Journal serves authors and subscribers worldwide, and it is selective in accepting contributions on the basis of merit, novelty and originality.