{"title":"一类分数平流-分散耦合系统的可解性","authors":"Yan Qiao, Tao Lu","doi":"10.3390/math12182873","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to provide some criteria for the existence and multiplicity of solutions for a class of fractional advection–dispersion coupled systems with nonlinear Sturm–Liouville conditions and instantaneous and non-instantaneous impulses. Specifically, the existence is derived through the Nehari manifold method, and the proof of multiplicity is based on Bonanno and Bisci’s critical point theorem, which does not require proof that the functional satisfies the Palais–Smale condition. Finally, to illustrate the obtained results, an example is provided.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvability of a Class of Fractional Advection–Dispersion Coupled Systems\",\"authors\":\"Yan Qiao, Tao Lu\",\"doi\":\"10.3390/math12182873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to provide some criteria for the existence and multiplicity of solutions for a class of fractional advection–dispersion coupled systems with nonlinear Sturm–Liouville conditions and instantaneous and non-instantaneous impulses. Specifically, the existence is derived through the Nehari manifold method, and the proof of multiplicity is based on Bonanno and Bisci’s critical point theorem, which does not require proof that the functional satisfies the Palais–Smale condition. Finally, to illustrate the obtained results, an example is provided.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Solvability of a Class of Fractional Advection–Dispersion Coupled Systems
The purpose of this study is to provide some criteria for the existence and multiplicity of solutions for a class of fractional advection–dispersion coupled systems with nonlinear Sturm–Liouville conditions and instantaneous and non-instantaneous impulses. Specifically, the existence is derived through the Nehari manifold method, and the proof of multiplicity is based on Bonanno and Bisci’s critical point theorem, which does not require proof that the functional satisfies the Palais–Smale condition. Finally, to illustrate the obtained results, an example is provided.