指数函数幂级数展开归一化尾部的绝对单调性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Feng Qi
{"title":"指数函数幂级数展开归一化尾部的绝对单调性","authors":"Feng Qi","doi":"10.3390/math12182859","DOIUrl":null,"url":null,"abstract":"In this work, the author reviews the origination of normalized tails of the Maclaurin power series expansions of infinitely differentiable functions, presents that the ratio between two normalized tails of the Maclaurin power series expansion of the exponential function is decreasing on the positive axis, and proves that the normalized tail of the Maclaurin power series expansion of the exponential function is absolutely monotonic on the whole real axis.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absolute Monotonicity of Normalized Tail of Power Series Expansion of Exponential Function\",\"authors\":\"Feng Qi\",\"doi\":\"10.3390/math12182859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the author reviews the origination of normalized tails of the Maclaurin power series expansions of infinitely differentiable functions, presents that the ratio between two normalized tails of the Maclaurin power series expansion of the exponential function is decreasing on the positive axis, and proves that the normalized tail of the Maclaurin power series expansion of the exponential function is absolutely monotonic on the whole real axis.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在这部著作中,作者回顾了无穷微分函数的麦克劳林幂级数展开的归一化尾部的起源,提出了指数函数的麦克劳林幂级数展开的两个归一化尾部之间的比值在正轴上是递减的,并证明了指数函数的麦克劳林幂级数展开的归一化尾部在整个实轴上是绝对单调的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absolute Monotonicity of Normalized Tail of Power Series Expansion of Exponential Function
In this work, the author reviews the origination of normalized tails of the Maclaurin power series expansions of infinitely differentiable functions, presents that the ratio between two normalized tails of the Maclaurin power series expansion of the exponential function is decreasing on the positive axis, and proves that the normalized tail of the Maclaurin power series expansion of the exponential function is absolutely monotonic on the whole real axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信