哈恩-巴拿赫定理的应用、矩问题的解法及相关近似法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Octav Olteanu
{"title":"哈恩-巴拿赫定理的应用、矩问题的解法及相关近似法","authors":"Octav Olteanu","doi":"10.3390/math12182878","DOIUrl":null,"url":null,"abstract":"We start by an application the of Krein–Milman theorem to the integral representation of completely monotonic functions. Elements of convex optimization are also mentioned. The paper continues with applications of Hahn–Banach-type theorems and polynomial approximation to obtain recent results on the moment problem on the unbounded closed interval . Necessary and sufficient conditions for the existence and uniqueness of the solution are pointed out. Operator-valued moment problems and a scalar-valued moment problem are solved.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of the Hahn-Banach Theorem, a Solution of the Moment Problem and the Related Approximation\",\"authors\":\"Octav Olteanu\",\"doi\":\"10.3390/math12182878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We start by an application the of Krein–Milman theorem to the integral representation of completely monotonic functions. Elements of convex optimization are also mentioned. The paper continues with applications of Hahn–Banach-type theorems and polynomial approximation to obtain recent results on the moment problem on the unbounded closed interval . Necessary and sufficient conditions for the existence and uniqueness of the solution are pointed out. Operator-valued moment problems and a scalar-valued moment problem are solved.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3390/math12182878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们首先将 Krein-Milman 定理应用于完全单调函数的积分表示。文中还提到了凸优化的要素。接着,论文应用哈恩-巴纳奇(Hahn-Banach)型定理和多项式逼近法,得出了无界闭合区间上矩问题的最新结果。论文指出了解的存在性和唯一性的必要条件和充分条件。解决了算子值矩问题和标量值矩问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of the Hahn-Banach Theorem, a Solution of the Moment Problem and the Related Approximation
We start by an application the of Krein–Milman theorem to the integral representation of completely monotonic functions. Elements of convex optimization are also mentioned. The paper continues with applications of Hahn–Banach-type theorems and polynomial approximation to obtain recent results on the moment problem on the unbounded closed interval . Necessary and sufficient conditions for the existence and uniqueness of the solution are pointed out. Operator-valued moment problems and a scalar-valued moment problem are solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信