{"title":"高迁移率基团框 1 是硫代乙酰胺诱导的大鼠肝损伤中诱导中性粒细胞和巨噬细胞浸润的危险信号","authors":"Mizuki KURAMOCHI, Mohammad Rabiul KARIM, Takeshi IZAWA, Mitsuru KUWAMURA, Jyoji YAMATE","doi":"10.1293/tox.2024-0055","DOIUrl":null,"url":null,"abstract":"</p><p>The liver, a major organ involved in substance metabolism, is highly susceptible to toxicity induced by chemicals and their metabolites. Although damage-associated molecular patterns (DAMPs) have been implicated in the development of sterile inflammation following cell injury, their involvement in chemically induced hepatocellular injury remains underexplored. This study aimed to determine the role of high-mobility group box 1 (HMGB1), a DAMP, in a rat model of liver injury treated with thioacetamide, a hepatotoxicant. The rats were administered thioacetamide and treated with HMGB1 neutralizing antibody. Histopathological analysis revealed the absence of significant differences between control rats and HMGB1 neutralizing antibody-treated rats. However, HMGB1 neutralizing antibody-treated rats showed a reduction in the hepatic devitalization enzymes, a decrease in the number of anti-inflammatory cluster of differentiation 163<sup>+</sup> M2 macrophages and neutrophils in the injured area, and a decrease in cytokine expression. These results suggest that HMGB1 leads to the progression of inflammation after chemically induced hepatocyte injury and may represent a therapeutic target for mitigating such injury.</p>\n<p></p>","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"38 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High mobility group box1 as a danger signal inducing the infiltration of neutrophils and macrophages in thioacetamide-induced rat liver injury\",\"authors\":\"Mizuki KURAMOCHI, Mohammad Rabiul KARIM, Takeshi IZAWA, Mitsuru KUWAMURA, Jyoji YAMATE\",\"doi\":\"10.1293/tox.2024-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>The liver, a major organ involved in substance metabolism, is highly susceptible to toxicity induced by chemicals and their metabolites. Although damage-associated molecular patterns (DAMPs) have been implicated in the development of sterile inflammation following cell injury, their involvement in chemically induced hepatocellular injury remains underexplored. This study aimed to determine the role of high-mobility group box 1 (HMGB1), a DAMP, in a rat model of liver injury treated with thioacetamide, a hepatotoxicant. The rats were administered thioacetamide and treated with HMGB1 neutralizing antibody. Histopathological analysis revealed the absence of significant differences between control rats and HMGB1 neutralizing antibody-treated rats. However, HMGB1 neutralizing antibody-treated rats showed a reduction in the hepatic devitalization enzymes, a decrease in the number of anti-inflammatory cluster of differentiation 163<sup>+</sup> M2 macrophages and neutrophils in the injured area, and a decrease in cytokine expression. These results suggest that HMGB1 leads to the progression of inflammation after chemically induced hepatocyte injury and may represent a therapeutic target for mitigating such injury.</p>\\n<p></p>\",\"PeriodicalId\":17437,\"journal\":{\"name\":\"Journal of Toxicologic Pathology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicologic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1293/tox.2024-0055\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2024-0055","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
High mobility group box1 as a danger signal inducing the infiltration of neutrophils and macrophages in thioacetamide-induced rat liver injury
The liver, a major organ involved in substance metabolism, is highly susceptible to toxicity induced by chemicals and their metabolites. Although damage-associated molecular patterns (DAMPs) have been implicated in the development of sterile inflammation following cell injury, their involvement in chemically induced hepatocellular injury remains underexplored. This study aimed to determine the role of high-mobility group box 1 (HMGB1), a DAMP, in a rat model of liver injury treated with thioacetamide, a hepatotoxicant. The rats were administered thioacetamide and treated with HMGB1 neutralizing antibody. Histopathological analysis revealed the absence of significant differences between control rats and HMGB1 neutralizing antibody-treated rats. However, HMGB1 neutralizing antibody-treated rats showed a reduction in the hepatic devitalization enzymes, a decrease in the number of anti-inflammatory cluster of differentiation 163+ M2 macrophages and neutrophils in the injured area, and a decrease in cytokine expression. These results suggest that HMGB1 leads to the progression of inflammation after chemically induced hepatocyte injury and may represent a therapeutic target for mitigating such injury.
期刊介绍:
JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below.
Administrative Opinions of Policymakers and Regulatory Agencies
Adverse Events
Carcinogenesis
Data of A Predominantly Negative Nature
Drug-Induced Hematologic Toxicity
Embryological Pathology
High Throughput Pathology
Historical Data of Experimental Animals
Immunohistochemical Analysis
Molecular Pathology
Nomenclature of Lesions
Non-mammal Toxicity Study
Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors
Technology and Methodology Related to Toxicological Pathology
Tumor Pathology; Neoplasia and Hyperplasia
Ultrastructural Analysis
Use of Animal Models.