地狱尖峰神经网络的可扩展框架

Marissa Dominijanni
{"title":"地狱尖峰神经网络的可扩展框架","authors":"Marissa Dominijanni","doi":"arxiv-2409.11567","DOIUrl":null,"url":null,"abstract":"This paper introduces Inferno, a software library built on top of PyTorch\nthat is designed to meet distinctive challenges of using spiking neural\nnetworks (SNNs) for machine learning tasks. We describe the architecture of\nInferno and key differentiators that make it uniquely well-suited to these\ntasks. We show how Inferno supports trainable heterogeneous delays on both CPUs\nand GPUs, and how Inferno enables a \"write once, apply everywhere\" development\nmethodology for novel models and techniques. We compare Inferno's performance\nto BindsNET, a library aimed at machine learning with SNNs, and\nBrian2/Brian2CUDA which is popular in neuroscience. Among several examples, we\nshow how the design decisions made by Inferno facilitate easily implementing\nthe new methods of Nadafian and Ganjtabesh in delay learning with spike-timing\ndependent plasticity.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferno: An Extensible Framework for Spiking Neural Networks\",\"authors\":\"Marissa Dominijanni\",\"doi\":\"arxiv-2409.11567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Inferno, a software library built on top of PyTorch\\nthat is designed to meet distinctive challenges of using spiking neural\\nnetworks (SNNs) for machine learning tasks. We describe the architecture of\\nInferno and key differentiators that make it uniquely well-suited to these\\ntasks. We show how Inferno supports trainable heterogeneous delays on both CPUs\\nand GPUs, and how Inferno enables a \\\"write once, apply everywhere\\\" development\\nmethodology for novel models and techniques. We compare Inferno's performance\\nto BindsNET, a library aimed at machine learning with SNNs, and\\nBrian2/Brian2CUDA which is popular in neuroscience. Among several examples, we\\nshow how the design decisions made by Inferno facilitate easily implementing\\nthe new methods of Nadafian and Ganjtabesh in delay learning with spike-timing\\ndependent plasticity.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 Inferno,这是一个建立在 PyTorch 基础上的软件库,旨在应对使用尖峰神经网络(SNN)完成机器学习任务所面临的独特挑战。我们描述了Inferno的架构以及使其能够独一无二地胜任这些任务的关键差异化因素。我们展示了Inferno如何在CPU和GPU上支持可训练的异构延迟,以及Inferno如何为新型模型和技术实现 "一次编写,随处应用 "的开发方法。我们将Inferno的性能与BindsNET和Brian2/Brian2CUDA进行了比较,BindsNET是一个针对使用SNN进行机器学习的库,而Brian2/Brian2CUDA则在神经科学领域非常流行。在几个例子中,我们展示了 Inferno 所做的设计决定是如何帮助轻松实现 Nadafian 和 Ganjtabesh 的新方法的,这些方法用于具有尖峰计时可塑性的延迟学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferno: An Extensible Framework for Spiking Neural Networks
This paper introduces Inferno, a software library built on top of PyTorch that is designed to meet distinctive challenges of using spiking neural networks (SNNs) for machine learning tasks. We describe the architecture of Inferno and key differentiators that make it uniquely well-suited to these tasks. We show how Inferno supports trainable heterogeneous delays on both CPUs and GPUs, and how Inferno enables a "write once, apply everywhere" development methodology for novel models and techniques. We compare Inferno's performance to BindsNET, a library aimed at machine learning with SNNs, and Brian2/Brian2CUDA which is popular in neuroscience. Among several examples, we show how the design decisions made by Inferno facilitate easily implementing the new methods of Nadafian and Ganjtabesh in delay learning with spike-timing dependent plasticity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信