用于复值数据的 Steinmetz 神经网络

Shyam Venkatasubramanian, Ali Pezeshki, Vahid Tarokh
{"title":"用于复值数据的 Steinmetz 神经网络","authors":"Shyam Venkatasubramanian, Ali Pezeshki, Vahid Tarokh","doi":"arxiv-2409.10075","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new approach to processing complex-valued data\nusing DNNs consisting of parallel real-valued subnetworks with coupled outputs.\nOur proposed class of architectures, referred to as Steinmetz Neural Networks,\nleverages multi-view learning to construct more interpretable representations\nwithin the latent space. Subsequently, we present the Analytic Neural Network,\nwhich implements a consistency penalty that encourages analytic signal\nrepresentations in the Steinmetz neural network's latent space. This penalty\nenforces a deterministic and orthogonal relationship between the real and\nimaginary components. Utilizing an information-theoretic construction, we\ndemonstrate that the upper bound on the generalization error posited by the\nanalytic neural network is lower than that of the general class of Steinmetz\nneural networks. Our numerical experiments demonstrate the improved performance\nand robustness to additive noise, afforded by our proposed networks on\nbenchmark datasets and synthetic examples.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steinmetz Neural Networks for Complex-Valued Data\",\"authors\":\"Shyam Venkatasubramanian, Ali Pezeshki, Vahid Tarokh\",\"doi\":\"arxiv-2409.10075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a new approach to processing complex-valued data\\nusing DNNs consisting of parallel real-valued subnetworks with coupled outputs.\\nOur proposed class of architectures, referred to as Steinmetz Neural Networks,\\nleverages multi-view learning to construct more interpretable representations\\nwithin the latent space. Subsequently, we present the Analytic Neural Network,\\nwhich implements a consistency penalty that encourages analytic signal\\nrepresentations in the Steinmetz neural network's latent space. This penalty\\nenforces a deterministic and orthogonal relationship between the real and\\nimaginary components. Utilizing an information-theoretic construction, we\\ndemonstrate that the upper bound on the generalization error posited by the\\nanalytic neural network is lower than that of the general class of Steinmetz\\nneural networks. Our numerical experiments demonstrate the improved performance\\nand robustness to additive noise, afforded by our proposed networks on\\nbenchmark datasets and synthetic examples.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们介绍了一种处理复值数据的新方法,即使用由具有耦合输出的并行实值子网络组成的 DNN。我们提出的这一类架构被称为 Steinmetz 神经网络,它利用多视角学习在潜在空间中构建更多可解释的表示。随后,我们提出了分析神经网络,它实施了一种一致性惩罚,鼓励在 Steinmetz 神经网络的潜在空间中进行分析信号表示。这种惩罚加强了实分量和虚分量之间的确定性和正交关系。利用信息论结构,我们证明了分析神经网络假设的泛化误差上限低于一般的斯坦梅茨神经网络。我们的数值实验证明,我们提出的网络在基准数据集和合成示例上具有更高的性能和对加性噪声的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steinmetz Neural Networks for Complex-Valued Data
In this work, we introduce a new approach to processing complex-valued data using DNNs consisting of parallel real-valued subnetworks with coupled outputs. Our proposed class of architectures, referred to as Steinmetz Neural Networks, leverages multi-view learning to construct more interpretable representations within the latent space. Subsequently, we present the Analytic Neural Network, which implements a consistency penalty that encourages analytic signal representations in the Steinmetz neural network's latent space. This penalty enforces a deterministic and orthogonal relationship between the real and imaginary components. Utilizing an information-theoretic construction, we demonstrate that the upper bound on the generalization error posited by the analytic neural network is lower than that of the general class of Steinmetz neural networks. Our numerical experiments demonstrate the improved performance and robustness to additive noise, afforded by our proposed networks on benchmark datasets and synthetic examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信