随机植被顶点覆盖上 (1+1) 进化算法的固定参数可操作性

Jack Kearney, Frank Neumann, Andrew M. Sutton
{"title":"随机植被顶点覆盖上 (1+1) 进化算法的固定参数可操作性","authors":"Jack Kearney, Frank Neumann, Andrew M. Sutton","doi":"arxiv-2409.10144","DOIUrl":null,"url":null,"abstract":"We present the first parameterized analysis of a standard (1+1) Evolutionary\nAlgorithm on a distribution of vertex cover problems. We show that if the\nplanted cover is at most logarithmic, restarting the (1+1) EA every $O(n \\log\nn)$ steps will find a cover at least as small as the planted cover in\npolynomial time for sufficiently dense random graphs $p > 0.71$. For\nsuperlogarithmic planted covers, we prove that the (1+1) EA finds a solution in\nfixed-parameter tractable time in expectation. We complement these theoretical investigations with a number of computational\nexperiments that highlight the interplay between planted cover size, graph\ndensity and runtime.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed-Parameter Tractability of the (1+1) Evolutionary Algorithm on Random Planted Vertex Covers\",\"authors\":\"Jack Kearney, Frank Neumann, Andrew M. Sutton\",\"doi\":\"arxiv-2409.10144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the first parameterized analysis of a standard (1+1) Evolutionary\\nAlgorithm on a distribution of vertex cover problems. We show that if the\\nplanted cover is at most logarithmic, restarting the (1+1) EA every $O(n \\\\log\\nn)$ steps will find a cover at least as small as the planted cover in\\npolynomial time for sufficiently dense random graphs $p > 0.71$. For\\nsuperlogarithmic planted covers, we prove that the (1+1) EA finds a solution in\\nfixed-parameter tractable time in expectation. We complement these theoretical investigations with a number of computational\\nexperiments that highlight the interplay between planted cover size, graph\\ndensity and runtime.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首次对顶点覆盖分布问题上的标准(1+1)进化算法进行了参数化分析。我们证明,如果种植覆盖最多为对数,那么对于足够密集的随机图 $p > 0.71$,每隔 $O(n \logn)$ 步重新启动 (1+1) 进化算法将在多项式时间内找到一个至少与种植覆盖一样小的覆盖。对于超对数植被覆盖,我们证明了 (1+1) EA 在期望时间内找到了一个无固定参数的解决方案。我们用大量计算实验来补充这些理论研究,这些实验突出了植被大小、图密度和运行时间之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed-Parameter Tractability of the (1+1) Evolutionary Algorithm on Random Planted Vertex Covers
We present the first parameterized analysis of a standard (1+1) Evolutionary Algorithm on a distribution of vertex cover problems. We show that if the planted cover is at most logarithmic, restarting the (1+1) EA every $O(n \log n)$ steps will find a cover at least as small as the planted cover in polynomial time for sufficiently dense random graphs $p > 0.71$. For superlogarithmic planted covers, we prove that the (1+1) EA finds a solution in fixed-parameter tractable time in expectation. We complement these theoretical investigations with a number of computational experiments that highlight the interplay between planted cover size, graph density and runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信