受生物启发的曼巴:选择性状态空间模型中的时域性和可生物学习

Jiahao Qin
{"title":"受生物启发的曼巴:选择性状态空间模型中的时域性和可生物学习","authors":"Jiahao Qin","doi":"arxiv-2409.11263","DOIUrl":null,"url":null,"abstract":"This paper introduces Bio-Inspired Mamba (BIM), a novel online learning\nframework for selective state space models that integrates biological learning\nprinciples with the Mamba architecture. BIM combines Real-Time Recurrent\nLearning (RTRL) with Spike-Timing-Dependent Plasticity (STDP)-like local\nlearning rules, addressing the challenges of temporal locality and biological\nplausibility in training spiking neural networks. Our approach leverages the\ninherent connection between backpropagation through time and STDP, offering a\ncomputationally efficient alternative that maintains the ability to capture\nlong-range dependencies. We evaluate BIM on language modeling, speech\nrecognition, and biomedical signal analysis tasks, demonstrating competitive\nperformance against traditional methods while adhering to biological learning\nprinciples. Results show improved energy efficiency and potential for\nneuromorphic hardware implementation. BIM not only advances the field of\nbiologically plausible machine learning but also provides insights into the\nmechanisms of temporal information processing in biological neural networks.","PeriodicalId":501347,"journal":{"name":"arXiv - CS - Neural and Evolutionary Computing","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models\",\"authors\":\"Jiahao Qin\",\"doi\":\"arxiv-2409.11263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces Bio-Inspired Mamba (BIM), a novel online learning\\nframework for selective state space models that integrates biological learning\\nprinciples with the Mamba architecture. BIM combines Real-Time Recurrent\\nLearning (RTRL) with Spike-Timing-Dependent Plasticity (STDP)-like local\\nlearning rules, addressing the challenges of temporal locality and biological\\nplausibility in training spiking neural networks. Our approach leverages the\\ninherent connection between backpropagation through time and STDP, offering a\\ncomputationally efficient alternative that maintains the ability to capture\\nlong-range dependencies. We evaluate BIM on language modeling, speech\\nrecognition, and biomedical signal analysis tasks, demonstrating competitive\\nperformance against traditional methods while adhering to biological learning\\nprinciples. Results show improved energy efficiency and potential for\\nneuromorphic hardware implementation. BIM not only advances the field of\\nbiologically plausible machine learning but also provides insights into the\\nmechanisms of temporal information processing in biological neural networks.\",\"PeriodicalId\":501347,\"journal\":{\"name\":\"arXiv - CS - Neural and Evolutionary Computing\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Neural and Evolutionary Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Neural and Evolutionary Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了生物启发曼巴(BIM),这是一种用于选择性状态空间模型的新型在线学习框架,它将生物学习原理与曼巴架构融为一体。BIM 将实时循环学习(Real-Time RecurrentLearning,RTRL)与类似于尖峰定时可塑性(Spike-Timing-Dependent Plasticity,STDP)的局部学习规则相结合,解决了尖峰神经网络训练中的时间局部性和生物可信性难题。我们的方法利用了时间反向传播和 STDP 之间的内在联系,提供了一种计算高效的替代方法,同时保持了捕捉长程依赖性的能力。我们在语言建模、语音识别和生物医学信号分析任务中对 BIM 进行了评估,结果表明,在遵循生物学习原理的同时,BIM 的性能与传统方法相比极具竞争力。结果表明,BIM 的能效得到了提高,并有可能实现超形态硬件。BIM 不仅推动了生物可信机器学习领域的发展,还为生物神经网络中的时间信息处理机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-Inspired Mamba: Temporal Locality and Bioplausible Learning in Selective State Space Models
This paper introduces Bio-Inspired Mamba (BIM), a novel online learning framework for selective state space models that integrates biological learning principles with the Mamba architecture. BIM combines Real-Time Recurrent Learning (RTRL) with Spike-Timing-Dependent Plasticity (STDP)-like local learning rules, addressing the challenges of temporal locality and biological plausibility in training spiking neural networks. Our approach leverages the inherent connection between backpropagation through time and STDP, offering a computationally efficient alternative that maintains the ability to capture long-range dependencies. We evaluate BIM on language modeling, speech recognition, and biomedical signal analysis tasks, demonstrating competitive performance against traditional methods while adhering to biological learning principles. Results show improved energy efficiency and potential for neuromorphic hardware implementation. BIM not only advances the field of biologically plausible machine learning but also provides insights into the mechanisms of temporal information processing in biological neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信