基于 Memristor 的神经形态系统中的对比学习

Cory Merkel, Alexander Ororbia
{"title":"基于 Memristor 的神经形态系统中的对比学习","authors":"Cory Merkel, Alexander Ororbia","doi":"arxiv-2409.10887","DOIUrl":null,"url":null,"abstract":"Spiking neural networks, the third generation of artificial neural networks,\nhave become an important family of neuron-based models that sidestep many of\nthe key limitations facing modern-day backpropagation-trained deep networks,\nincluding their high energy inefficiency and long-criticized biological\nimplausibility. In this work, we design and investigate a proof-of-concept\ninstantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic\nform of forward-forward-based, backpropagation-free learning. Our experimental\nsimulations demonstrate that a hardware implementation of CSDP is capable of\nlearning simple logic functions without the need to resort to complex gradient\ncalculations.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive Learning in Memristor-based Neuromorphic Systems\",\"authors\":\"Cory Merkel, Alexander Ororbia\",\"doi\":\"arxiv-2409.10887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks, the third generation of artificial neural networks,\\nhave become an important family of neuron-based models that sidestep many of\\nthe key limitations facing modern-day backpropagation-trained deep networks,\\nincluding their high energy inefficiency and long-criticized biological\\nimplausibility. In this work, we design and investigate a proof-of-concept\\ninstantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic\\nform of forward-forward-based, backpropagation-free learning. Our experimental\\nsimulations demonstrate that a hardware implementation of CSDP is capable of\\nlearning simple logic functions without the need to resort to complex gradient\\ncalculations.\",\"PeriodicalId\":501517,\"journal\":{\"name\":\"arXiv - QuanBio - Neurons and Cognition\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尖峰神经网络是第三代人工神经网络,已成为基于神经元的重要模型系列,它避开了现代反向传播训练的深度网络所面临的许多关键限制,包括其高能量低效率和长期受到批评的生物学不可能性。在这项工作中,我们设计并研究了对比信号依赖可塑性(CSDP)的概念验证,这是一种基于前向、无反向传播学习的神经形态。我们的实验模拟证明,CSDP 的硬件实现能够学习简单的逻辑函数,而无需进行复杂的梯度计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive Learning in Memristor-based Neuromorphic Systems
Spiking neural networks, the third generation of artificial neural networks, have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks, including their high energy inefficiency and long-criticized biological implausibility. In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning. Our experimental simulations demonstrate that a hardware implementation of CSDP is capable of learning simple logic functions without the need to resort to complex gradient calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信