用于高光谱图像分类的金字塔分层空间-光谱变换器

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Muhammad Ahmad;Muhammad Hassaan Farooq Butt;Manuel Mazzara;Salvatore Distefano;Adil Mehmood Khan;Hamad Ahmed Altuwaijri
{"title":"用于高光谱图像分类的金字塔分层空间-光谱变换器","authors":"Muhammad Ahmad;Muhammad Hassaan Farooq Butt;Manuel Mazzara;Salvatore Distefano;Adil Mehmood Khan;Hamad Ahmed Altuwaijri","doi":"10.1109/JSTARS.2024.3461851","DOIUrl":null,"url":null,"abstract":"The transformer model encounters challenges with variable-length input sequences, leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical spatial-spectral transformer (PyFormer). This innovative approach organizes input data hierarchically into pyramid segments, each representing distinct abstraction levels, thereby enhancing processing efficiency. At each level, a dedicated transformer encoder is applied, effectively capturing both local and global context. Integration of outputs from different levels culminates in the final input representation. In short, the pyramid excels at capturing spatial features and local patterns, while the transformer effectively models spatial-spectral correlations and long-range dependencies. Experimental results underscore the superiority of the proposed method over state-of-the-art approaches, achieving overall accuracies of 96.28% for the Pavia University dataset and 97.36% for the University of Houston dataset. In addition, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of PyFormer in advancing hyperspectral image classification (HSIC).","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681622","citationCount":"0","resultStr":"{\"title\":\"Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification\",\"authors\":\"Muhammad Ahmad;Muhammad Hassaan Farooq Butt;Manuel Mazzara;Salvatore Distefano;Adil Mehmood Khan;Hamad Ahmed Altuwaijri\",\"doi\":\"10.1109/JSTARS.2024.3461851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transformer model encounters challenges with variable-length input sequences, leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical spatial-spectral transformer (PyFormer). This innovative approach organizes input data hierarchically into pyramid segments, each representing distinct abstraction levels, thereby enhancing processing efficiency. At each level, a dedicated transformer encoder is applied, effectively capturing both local and global context. Integration of outputs from different levels culminates in the final input representation. In short, the pyramid excels at capturing spatial features and local patterns, while the transformer effectively models spatial-spectral correlations and long-range dependencies. Experimental results underscore the superiority of the proposed method over state-of-the-art approaches, achieving overall accuracies of 96.28% for the Pavia University dataset and 97.36% for the University of Houston dataset. In addition, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of PyFormer in advancing hyperspectral image classification (HSIC).\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681622\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681622/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681622/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

变换器模型在处理变长输入序列时遇到了挑战,导致效率和可扩展性方面的问题。为了克服这一问题,我们提出了一种基于金字塔的分层空间光谱变换器(PyFormer)。这种创新方法将输入数据分层组织成金字塔段,每个段代表不同的抽象层级,从而提高了处理效率。在每个层次上,都应用了专用的变换器编码器,从而有效地捕捉局部和全局背景。整合不同层次的输出,最终形成最终的输入表示。简而言之,金字塔擅长捕捉空间特征和局部模式,而变换器则能有效地模拟空间-光谱相关性和长距离依赖性。实验结果表明,所提出的方法优于最先进的方法,帕维亚大学数据集的总体准确率达到 96.28%,休斯顿大学数据集的总体准确率达到 97.36%。此外,不相交样本的加入增强了稳健性和可靠性,从而凸显了 PyFormer 在推进高光谱图像分类(HSIC)方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification
The transformer model encounters challenges with variable-length input sequences, leading to efficiency and scalability concerns. To overcome this, we propose a pyramid-based hierarchical spatial-spectral transformer (PyFormer). This innovative approach organizes input data hierarchically into pyramid segments, each representing distinct abstraction levels, thereby enhancing processing efficiency. At each level, a dedicated transformer encoder is applied, effectively capturing both local and global context. Integration of outputs from different levels culminates in the final input representation. In short, the pyramid excels at capturing spatial features and local patterns, while the transformer effectively models spatial-spectral correlations and long-range dependencies. Experimental results underscore the superiority of the proposed method over state-of-the-art approaches, achieving overall accuracies of 96.28% for the Pavia University dataset and 97.36% for the University of Houston dataset. In addition, the incorporation of disjoint samples augments robustness and reliability, thereby highlighting the potential of PyFormer in advancing hyperspectral image classification (HSIC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信