{"title":"有限维度中的爆炸性渗流","authors":"Ming Li, Junfeng Wang, Youjin Deng","doi":"10.1103/physrevresearch.6.033319","DOIUrl":null,"url":null,"abstract":"Explosive percolation (EP) has received significant research attention due to its rich and anomalous phenomena near criticality. In our recent study [<span>Phys. Rev. Lett.</span> <b>130</b>, 147101 (2023)], we demonstrated that the correct critical behaviors of EP in infinite dimensions (complete graph) can be accurately extracted using the event-based method, with finite-size scaling behaviors still described by the standard finite-size scaling theory. We perform an extensive simulation of EPs on hypercubic lattices ranging from dimensions <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math> to 6, and find that the critical behaviors consistently obey the standard finite-size scaling theory. Consequently, we obtain a high-precision determination of the percolation thresholds and critical exponents, revealing that EPs governed by the product and sum rules belong to different universality classes. Remarkably, despite the mean of the dynamic pseudocritical point <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"script\">T</mi><mi>L</mi></msub></math> deviating from the infinite-lattice criticality by a distance determined by the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math>-dependent correlation-length exponent, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"script\">T</mi><mi>L</mi></msub></math> follows a normal (Gaussian) distribution across all dimensions, with a standard deviation proportional to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>1</mn><mo>/</mo><msqrt><mi>V</mi></msqrt></mrow></math>, where <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> denotes the system volume. A theoretical argument associated with the central-limit theorem is further proposed to understand the probability distribution of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi mathvariant=\"script\">T</mi><mi>L</mi></msub></math>. These findings offer a comprehensive understanding of critical behaviors in EPs across various dimensions, revealing a different dimension-dependence compared to standard bond percolation.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explosive percolation in finite dimensions\",\"authors\":\"Ming Li, Junfeng Wang, Youjin Deng\",\"doi\":\"10.1103/physrevresearch.6.033319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explosive percolation (EP) has received significant research attention due to its rich and anomalous phenomena near criticality. In our recent study [<span>Phys. Rev. Lett.</span> <b>130</b>, 147101 (2023)], we demonstrated that the correct critical behaviors of EP in infinite dimensions (complete graph) can be accurately extracted using the event-based method, with finite-size scaling behaviors still described by the standard finite-size scaling theory. We perform an extensive simulation of EPs on hypercubic lattices ranging from dimensions <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math> to 6, and find that the critical behaviors consistently obey the standard finite-size scaling theory. Consequently, we obtain a high-precision determination of the percolation thresholds and critical exponents, revealing that EPs governed by the product and sum rules belong to different universality classes. Remarkably, despite the mean of the dynamic pseudocritical point <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"script\\\">T</mi><mi>L</mi></msub></math> deviating from the infinite-lattice criticality by a distance determined by the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math>-dependent correlation-length exponent, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"script\\\">T</mi><mi>L</mi></msub></math> follows a normal (Gaussian) distribution across all dimensions, with a standard deviation proportional to <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mn>1</mn><mo>/</mo><msqrt><mi>V</mi></msqrt></mrow></math>, where <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>V</mi></math> denotes the system volume. A theoretical argument associated with the central-limit theorem is further proposed to understand the probability distribution of <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mi mathvariant=\\\"script\\\">T</mi><mi>L</mi></msub></math>. These findings offer a comprehensive understanding of critical behaviors in EPs across various dimensions, revealing a different dimension-dependence compared to standard bond percolation.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
爆炸性渗滤(EP)因其临界点附近丰富的反常现象而备受研究关注。在我们最近的研究[Phys. Rev. Lett. 130, 147101 (2023)]中,我们证明了使用基于事件的方法可以准确地提取无限维(完整图)EP 的正确临界行为,而有限尺寸缩放行为仍由标准的有限尺寸缩放理论描述。我们在维数从 d=2 到 6 的超立方晶格上对 EP 进行了大量模拟,发现临界行为始终遵循标准有限尺寸缩放理论。因此,我们获得了渗流阈值和临界指数的高精度测定,揭示了由积规则和和规则支配的 EP 属于不同的普遍性类别。值得注意的是,尽管动态伪临界点 TL 的平均值偏离无限晶格临界点的距离由依赖于 d 的相关长度指数决定,但 TL 在所有维度上都遵循正态(高斯)分布,标准偏差与 1/V 成正比,其中 V 表示系统体积。为理解 TL 的概率分布,进一步提出了与中心极限定理相关的理论论证。这些发现为我们全面理解 EP 在不同维度上的临界行为提供了依据,揭示了与标准键渗流不同的维度依赖性。
Explosive percolation (EP) has received significant research attention due to its rich and anomalous phenomena near criticality. In our recent study [Phys. Rev. Lett.130, 147101 (2023)], we demonstrated that the correct critical behaviors of EP in infinite dimensions (complete graph) can be accurately extracted using the event-based method, with finite-size scaling behaviors still described by the standard finite-size scaling theory. We perform an extensive simulation of EPs on hypercubic lattices ranging from dimensions to 6, and find that the critical behaviors consistently obey the standard finite-size scaling theory. Consequently, we obtain a high-precision determination of the percolation thresholds and critical exponents, revealing that EPs governed by the product and sum rules belong to different universality classes. Remarkably, despite the mean of the dynamic pseudocritical point deviating from the infinite-lattice criticality by a distance determined by the -dependent correlation-length exponent, follows a normal (Gaussian) distribution across all dimensions, with a standard deviation proportional to , where denotes the system volume. A theoretical argument associated with the central-limit theorem is further proposed to understand the probability distribution of . These findings offer a comprehensive understanding of critical behaviors in EPs across various dimensions, revealing a different dimension-dependence compared to standard bond percolation.