Chieu Thanh Nguyen, Jan Harold Alcantara, Zijun Hao, Jein-Shan Chen
{"title":"解决二阶锥体互补问题的平滑惩罚法","authors":"Chieu Thanh Nguyen, Jan Harold Alcantara, Zijun Hao, Jein-Shan Chen","doi":"10.1007/s10898-024-01427-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a smoothing penalty approach for solving the second-order cone complementarity problem (SOCCP). The SOCCP is approximated by a smooth nonlinear equation with penalization parameter. We show that any solution sequence of the approximating equations converges to the solution of the SOCCP under the assumption that the associated function of the SOCCP satisfies a uniform Cartesian-type property. We present a corresponding algorithm for solving the SOCCP based on this smoothing penalty approach, and we demonstrate the efficiency of our method for solving linear, nonlinear and tensor complementarity problems in the second-order cone setting.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"11 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothing penalty approach for solving second-order cone complementarity problems\",\"authors\":\"Chieu Thanh Nguyen, Jan Harold Alcantara, Zijun Hao, Jein-Shan Chen\",\"doi\":\"10.1007/s10898-024-01427-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a smoothing penalty approach for solving the second-order cone complementarity problem (SOCCP). The SOCCP is approximated by a smooth nonlinear equation with penalization parameter. We show that any solution sequence of the approximating equations converges to the solution of the SOCCP under the assumption that the associated function of the SOCCP satisfies a uniform Cartesian-type property. We present a corresponding algorithm for solving the SOCCP based on this smoothing penalty approach, and we demonstrate the efficiency of our method for solving linear, nonlinear and tensor complementarity problems in the second-order cone setting.</p>\",\"PeriodicalId\":15961,\"journal\":{\"name\":\"Journal of Global Optimization\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Global Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01427-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01427-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Smoothing penalty approach for solving second-order cone complementarity problems
In this paper, we propose a smoothing penalty approach for solving the second-order cone complementarity problem (SOCCP). The SOCCP is approximated by a smooth nonlinear equation with penalization parameter. We show that any solution sequence of the approximating equations converges to the solution of the SOCCP under the assumption that the associated function of the SOCCP satisfies a uniform Cartesian-type property. We present a corresponding algorithm for solving the SOCCP based on this smoothing penalty approach, and we demonstrate the efficiency of our method for solving linear, nonlinear and tensor complementarity problems in the second-order cone setting.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.