{"title":"具有圆作用的接触流形的一些谱不变量的拓扑和动力学方面","authors":"Michel RuminLMO","doi":"arxiv-2409.11787","DOIUrl":null,"url":null,"abstract":"<div><p>We study analytic torsion and eta like invariants on CR contact\nmanifolds of any dimension admitting a circle transverse action, and equipped\nwith a unitary representation. We show that, when defined using the spectrum of\nrelevant operators arising in this geometry, the spectral series involved can\nbeen interpreted in their whole, both from a topological viewpoint, and as\npurely dynamical functions of the Reeb flow.</p></div>","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological and dynamical aspects of some spectral invariants of contact manifolds with circle action\",\"authors\":\"Michel RuminLMO\",\"doi\":\"arxiv-2409.11787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study analytic torsion and eta like invariants on CR contact\\nmanifolds of any dimension admitting a circle transverse action, and equipped\\nwith a unitary representation. We show that, when defined using the spectrum of\\nrelevant operators arising in this geometry, the spectral series involved can\\nbeen interpreted in their whole, both from a topological viewpoint, and as\\npurely dynamical functions of the Reeb flow.</p></div>\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topological and dynamical aspects of some spectral invariants of contact manifolds with circle action
We study analytic torsion and eta like invariants on CR contact
manifolds of any dimension admitting a circle transverse action, and equipped
with a unitary representation. We show that, when defined using the spectrum of
relevant operators arising in this geometry, the spectral series involved can
been interpreted in their whole, both from a topological viewpoint, and as
purely dynamical functions of the Reeb flow.