亥姆霍兹牛顿算子 N^k 的特征值和特征函数的表征

Zhe Wang, Ahcene Ghandriche, Jijun Liu
{"title":"亥姆霍兹牛顿算子 N^k 的特征值和特征函数的表征","authors":"Zhe Wang, Ahcene Ghandriche, Jijun Liu","doi":"arxiv-2409.09394","DOIUrl":null,"url":null,"abstract":"The Newtonian potential operator for the Helmholtz equation, which is\nrepresented by the volume integral with fundamental solution as kernel\nfunction, is of great importance for direct and inverse scattering of acoustic\nwaves. In this paper, the eigensystem for the Newtonian potential operator is\nfirstly shown to be equivalent to that for the Helmholtz equation with nonlocal\nboundary condition for a bounded and simply connected Lipschitz-regular domain.\nThen, we compute explicitly the eigenvalues and eigenfunctions of the Newtonian\npotential operator when it is defined in a 3-dimensional ball. Furthermore, the\neigenvalues' asymptotic behavior is demonstrated. To illustrate the behavior of\ncertain eigenfunctions, some numerical simulations are included.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the Eigenvalues and Eigenfunctions of the Helmholtz Newtonian operator N^k\",\"authors\":\"Zhe Wang, Ahcene Ghandriche, Jijun Liu\",\"doi\":\"arxiv-2409.09394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Newtonian potential operator for the Helmholtz equation, which is\\nrepresented by the volume integral with fundamental solution as kernel\\nfunction, is of great importance for direct and inverse scattering of acoustic\\nwaves. In this paper, the eigensystem for the Newtonian potential operator is\\nfirstly shown to be equivalent to that for the Helmholtz equation with nonlocal\\nboundary condition for a bounded and simply connected Lipschitz-regular domain.\\nThen, we compute explicitly the eigenvalues and eigenfunctions of the Newtonian\\npotential operator when it is defined in a 3-dimensional ball. Furthermore, the\\neigenvalues' asymptotic behavior is demonstrated. To illustrate the behavior of\\ncertain eigenfunctions, some numerical simulations are included.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

亥姆霍兹方程的牛顿势算子由基本解为核函数的体积积分表示,对于声波的直接和反向散射具有重要意义。本文首先证明了牛顿势算子的特征系等价于有界且简单连接的 Lipschitz 不规则域中具有非局部边界条件的 Helmholtz 方程的特征系,然后明确计算了牛顿势算子在三维球中定义时的特征值和特征函数。此外,我们还证明了特征值的渐近行为。为了说明某些特征函数的行为,还包括一些数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the Eigenvalues and Eigenfunctions of the Helmholtz Newtonian operator N^k
The Newtonian potential operator for the Helmholtz equation, which is represented by the volume integral with fundamental solution as kernel function, is of great importance for direct and inverse scattering of acoustic waves. In this paper, the eigensystem for the Newtonian potential operator is firstly shown to be equivalent to that for the Helmholtz equation with nonlocal boundary condition for a bounded and simply connected Lipschitz-regular domain. Then, we compute explicitly the eigenvalues and eigenfunctions of the Newtonian potential operator when it is defined in a 3-dimensional ball. Furthermore, the eigenvalues' asymptotic behavior is demonstrated. To illustrate the behavior of certain eigenfunctions, some numerical simulations are included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信