扰动周期薛定谔算子特征函数的锐衰减率

Wencai Liu, Rodrigo Matos, John N. Treuer
{"title":"扰动周期薛定谔算子特征函数的锐衰减率","authors":"Wencai Liu, Rodrigo Matos, John N. Treuer","doi":"arxiv-2409.10387","DOIUrl":null,"url":null,"abstract":"This paper investigates uniqueness results for perturbed periodic\nSchr\\\"odinger operators on $\\mathbb{Z}^d$. Specifically, we consider operators\nof the form $H = -\\Delta + V + v$, where $\\Delta$ is the discrete Laplacian,\n$V: \\mathbb{Z}^d \\rightarrow \\mathbb{R}$ is a periodic potential, and $v:\n\\mathbb{Z}^d \\rightarrow \\mathbb{C}$ represents a decaying impurity. We\nestablish quantitative conditions under which the equation $-\\Delta u + V u + v\nu = \\lambda u$, for $\\lambda \\in \\mathbb{C}$, admits only the trivial solution\n$u \\equiv 0$. Key applications include the absence of embedded eigenvalues for\noperators with impurities decaying faster than any exponential function and the\ndetermination of sharp decay rates for eigenfunctions. Our findings extend\nprevious works by providing precise decay conditions for impurities and\nanalyzing different spectral regimes of $\\lambda$.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp decay rate for eigenfunctions of perturbed periodic Schrödinger operators\",\"authors\":\"Wencai Liu, Rodrigo Matos, John N. Treuer\",\"doi\":\"arxiv-2409.10387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates uniqueness results for perturbed periodic\\nSchr\\\\\\\"odinger operators on $\\\\mathbb{Z}^d$. Specifically, we consider operators\\nof the form $H = -\\\\Delta + V + v$, where $\\\\Delta$ is the discrete Laplacian,\\n$V: \\\\mathbb{Z}^d \\\\rightarrow \\\\mathbb{R}$ is a periodic potential, and $v:\\n\\\\mathbb{Z}^d \\\\rightarrow \\\\mathbb{C}$ represents a decaying impurity. We\\nestablish quantitative conditions under which the equation $-\\\\Delta u + V u + v\\nu = \\\\lambda u$, for $\\\\lambda \\\\in \\\\mathbb{C}$, admits only the trivial solution\\n$u \\\\equiv 0$. Key applications include the absence of embedded eigenvalues for\\noperators with impurities decaying faster than any exponential function and the\\ndetermination of sharp decay rates for eigenfunctions. Our findings extend\\nprevious works by providing precise decay conditions for impurities and\\nanalyzing different spectral regimes of $\\\\lambda$.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了$\mathbb{Z}^d$上扰动周期薛定谔算子的唯一性结果。具体来说,我们考虑了$H = -\Delta + V + v$形式的算子,其中$\Delta$是离散拉普拉奇,$V:\是周期势,$v:\mathbb{Z}^d \rightarrow \mathbb{C}$代表衰变的杂质。我们建立了定量条件,在这些条件下,方程 $-\Delta u + V u + vu = \lambda u$,对于 $\lambda \ in \mathbb{C}$,只接受微不足道的解$u \equiv 0$。其主要应用包括:对于杂质衰减速度快于任何指数函数的运算符,不存在内嵌特征值;以及确定特征函数的急剧衰减率。我们的发现为杂质提供了精确的衰变条件,并分析了 $\lambda$ 的不同谱系,从而扩展了以前的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp decay rate for eigenfunctions of perturbed periodic Schrödinger operators
This paper investigates uniqueness results for perturbed periodic Schr\"odinger operators on $\mathbb{Z}^d$. Specifically, we consider operators of the form $H = -\Delta + V + v$, where $\Delta$ is the discrete Laplacian, $V: \mathbb{Z}^d \rightarrow \mathbb{R}$ is a periodic potential, and $v: \mathbb{Z}^d \rightarrow \mathbb{C}$ represents a decaying impurity. We establish quantitative conditions under which the equation $-\Delta u + V u + v u = \lambda u$, for $\lambda \in \mathbb{C}$, admits only the trivial solution $u \equiv 0$. Key applications include the absence of embedded eigenvalues for operators with impurities decaying faster than any exponential function and the determination of sharp decay rates for eigenfunctions. Our findings extend previous works by providing precise decay conditions for impurities and analyzing different spectral regimes of $\lambda$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信