对雷蒙德著作的评论具有大耦合常数的斯图尔缪哈密顿--周期近似和间隙标签

Ram Band, Siegfried Beckus, Barak Biber, Laurent Raymond, Yannik Thomas
{"title":"对雷蒙德著作的评论具有大耦合常数的斯图尔缪哈密顿--周期近似和间隙标签","authors":"Ram Band, Siegfried Beckus, Barak Biber, Laurent Raymond, Yannik Thomas","doi":"arxiv-2409.10920","DOIUrl":null,"url":null,"abstract":"We present a review of the work L. Raymond from 1995. The review aims at\nmaking this work more accessible and offers adaptations of some statements and\nproofs. In addition, this review forms an applicable framework for the complete\nsolution of the Dry Ten Martini Problem for Sturmian Hamiltonians as appears in\nthe work arXiv:2402.16703 by R. Band, S. Beckus and R. Loewy. A Sturmian\nHamiltonian is a one-dimensional Schr\\\"odinger operator whose potential is a\nSturmian sequence multiplied by a coupling constant, $V\\in\\mathbb{R}$. The\nspectrum of such an operator is commonly approximated by the spectra of\ndesignated periodic operators. If $V>4$, then the spectral bands of the\nperiodic operators exhibit a particular combinatorial structure. This structure\nprovides a formula for the integrated density of states. Employing this, it is\nshown that if $V>4$, then all the gaps, as predicted by the gap labelling\ntheorem, are there.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of a work by Raymond: Sturmian Hamiltonians with a large coupling constant -- periodic approximations and gap labels\",\"authors\":\"Ram Band, Siegfried Beckus, Barak Biber, Laurent Raymond, Yannik Thomas\",\"doi\":\"arxiv-2409.10920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a review of the work L. Raymond from 1995. The review aims at\\nmaking this work more accessible and offers adaptations of some statements and\\nproofs. In addition, this review forms an applicable framework for the complete\\nsolution of the Dry Ten Martini Problem for Sturmian Hamiltonians as appears in\\nthe work arXiv:2402.16703 by R. Band, S. Beckus and R. Loewy. A Sturmian\\nHamiltonian is a one-dimensional Schr\\\\\\\"odinger operator whose potential is a\\nSturmian sequence multiplied by a coupling constant, $V\\\\in\\\\mathbb{R}$. The\\nspectrum of such an operator is commonly approximated by the spectra of\\ndesignated periodic operators. If $V>4$, then the spectral bands of the\\nperiodic operators exhibit a particular combinatorial structure. This structure\\nprovides a formula for the integrated density of states. Employing this, it is\\nshown that if $V>4$, then all the gaps, as predicted by the gap labelling\\ntheorem, are there.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对 L. Raymond 1995 年的著作进行了回顾。这篇评论旨在使这一工作更易于理解,并对一些陈述和证明进行了调整。此外,这篇综述还形成了一个适用的框架,用于解决 R. Band、S. Beckus 和 R. Loewy 在 arXiv:2402.16703 号著作中提出的斯图尔缪哈密顿的干十马尔蒂尼问题。斯图尔绵哈密顿是一个一维薛定谔算子,它的势是一个斯图尔绵序列乘以一个耦合常数$V\in\mathbb{R}$。这种算子的谱通常用指定周期算子的谱来近似。如果 $V>4$,那么周期算子的谱带就会表现出一种特殊的组合结构。这种结构提供了一个积分态密度公式。利用这个公式,可以证明如果 $V>4$,那么间隙标签定理所预言的所有间隙都存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of a work by Raymond: Sturmian Hamiltonians with a large coupling constant -- periodic approximations and gap labels
We present a review of the work L. Raymond from 1995. The review aims at making this work more accessible and offers adaptations of some statements and proofs. In addition, this review forms an applicable framework for the complete solution of the Dry Ten Martini Problem for Sturmian Hamiltonians as appears in the work arXiv:2402.16703 by R. Band, S. Beckus and R. Loewy. A Sturmian Hamiltonian is a one-dimensional Schr\"odinger operator whose potential is a Sturmian sequence multiplied by a coupling constant, $V\in\mathbb{R}$. The spectrum of such an operator is commonly approximated by the spectra of designated periodic operators. If $V>4$, then the spectral bands of the periodic operators exhibit a particular combinatorial structure. This structure provides a formula for the integrated density of states. Employing this, it is shown that if $V>4$, then all the gaps, as predicted by the gap labelling theorem, are there.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信