{"title":"哈密顿模拟的特洛特误差边界和动态多乘积公式","authors":"Sergiy Zhuk, Niall F. Robertson, Sergey Bravyi","doi":"10.1103/physrevresearch.6.033309","DOIUrl":null,"url":null,"abstract":"Multi-product formulas (MPFs) are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend the theory of Trotter error with commutator scaling developed by Childs <i>et al.</i> [A. M. Childs <i>et al.</i>, <span>Phys. Rev. X</span> <b>11</b>, 011020 (2021)] to multi-product formulas. Our result implies that multi-product formulas can achieve a quadratic reduction of Trotter error in 1-norm (nuclear norm) on arbitrary time intervals compared with the regular product formulas without increasing the required circuit depth or qubit connectivity. The number of circuit repetitions grows only by a constant factor. Second, we introduce dynamic multi-product formulas with time-dependent coefficients chosen to minimize a certain efficiently computable proxy for the Trotter error. We use a minimax estimation method to make dynamic multi-product formulas robust to uncertainty from algorithmic errors, sampling, and hardware noise. We call this method the minimax MPF and we provide a rigorous bound on its error.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trotter error bounds and dynamic multi-product formulas for Hamiltonian simulation\",\"authors\":\"Sergiy Zhuk, Niall F. Robertson, Sergey Bravyi\",\"doi\":\"10.1103/physrevresearch.6.033309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-product formulas (MPFs) are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend the theory of Trotter error with commutator scaling developed by Childs <i>et al.</i> [A. M. Childs <i>et al.</i>, <span>Phys. Rev. X</span> <b>11</b>, 011020 (2021)] to multi-product formulas. Our result implies that multi-product formulas can achieve a quadratic reduction of Trotter error in 1-norm (nuclear norm) on arbitrary time intervals compared with the regular product formulas without increasing the required circuit depth or qubit connectivity. The number of circuit repetitions grows only by a constant factor. Second, we introduce dynamic multi-product formulas with time-dependent coefficients chosen to minimize a certain efficiently computable proxy for the Trotter error. We use a minimax estimation method to make dynamic multi-product formulas robust to uncertainty from algorithmic errors, sampling, and hardware noise. We call this method the minimax MPF and we provide a rigorous bound on its error.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
多乘积公式(MPF)是特罗特电路的线性组合,能以较少的特罗特步骤高质量地模拟哈密尔顿时间演化。我们在此报告两项贡献,旨在使多积公式在近期量子模拟中更加可行。首先,我们将 Childs 等人[A. M. Childs 等人,Phys. Rev. X 11, 011020 (2021)]开发的具有换向器缩放的特罗特误差理论扩展到多乘积公式。我们的结果意味着,与常规乘积公式相比,多乘积公式可以在任意时间间隔上实现 1-正态(核正态)特罗特误差的四次方减少,而无需增加所需的电路深度或量子比特连接性。电路重复次数只增加一个常数因子。其次,我们引入了动态多乘积公式,并选择了随时间变化的系数,以最小化某种可有效计算的特罗特误差代理。我们采用最小估计法,使动态多乘法公式对算法误差、采样和硬件噪声带来的不确定性具有鲁棒性。我们称这种方法为 minimax MPF,并为其误差提供了严格的约束。
Trotter error bounds and dynamic multi-product formulas for Hamiltonian simulation
Multi-product formulas (MPFs) are linear combinations of Trotter circuits offering high-quality simulation of Hamiltonian time evolution with fewer Trotter steps. Here we report two contributions aimed at making multi-product formulas more viable for near-term quantum simulations. First, we extend the theory of Trotter error with commutator scaling developed by Childs et al. [A. M. Childs et al., Phys. Rev. X11, 011020 (2021)] to multi-product formulas. Our result implies that multi-product formulas can achieve a quadratic reduction of Trotter error in 1-norm (nuclear norm) on arbitrary time intervals compared with the regular product formulas without increasing the required circuit depth or qubit connectivity. The number of circuit repetitions grows only by a constant factor. Second, we introduce dynamic multi-product formulas with time-dependent coefficients chosen to minimize a certain efficiently computable proxy for the Trotter error. We use a minimax estimation method to make dynamic multi-product formulas robust to uncertainty from algorithmic errors, sampling, and hardware noise. We call this method the minimax MPF and we provide a rigorous bound on its error.