{"title":"希尔伯特空间值随机波动模型的稳健性","authors":"Fred Espen Benth, Heidar Eyjolfsson","doi":"10.1007/s00780-024-00542-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that Hilbert space-valued stochastic models are robust with respect to perturbations, due to measurement or approximation errors, in the underlying volatility process. Within the class of stochastic-volatility-modulated Ornstein–Uhlenbeck processes, we quantify the error induced by the volatility in terms of perturbations in the parameters of the volatility process. We moreover study the robustness of the volatility process itself with respect to finite-dimensional approximations of the driving compound Poisson process and semigroup generator, respectively, when considering operator-valued Barndorff-Nielsen and Shephard stochastic volatility models. We also give results on square root approximations. In all cases, we provide explicit bounds for the induced error in terms of the approximation of the underlying parameter. We discuss some applications to robustness of prices of options on forwards and volatility.</p>","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustness of Hilbert space-valued stochastic volatility models\",\"authors\":\"Fred Espen Benth, Heidar Eyjolfsson\",\"doi\":\"10.1007/s00780-024-00542-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show that Hilbert space-valued stochastic models are robust with respect to perturbations, due to measurement or approximation errors, in the underlying volatility process. Within the class of stochastic-volatility-modulated Ornstein–Uhlenbeck processes, we quantify the error induced by the volatility in terms of perturbations in the parameters of the volatility process. We moreover study the robustness of the volatility process itself with respect to finite-dimensional approximations of the driving compound Poisson process and semigroup generator, respectively, when considering operator-valued Barndorff-Nielsen and Shephard stochastic volatility models. We also give results on square root approximations. In all cases, we provide explicit bounds for the induced error in terms of the approximation of the underlying parameter. We discuss some applications to robustness of prices of options on forwards and volatility.</p>\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s00780-024-00542-4\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s00780-024-00542-4","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Robustness of Hilbert space-valued stochastic volatility models
In this paper, we show that Hilbert space-valued stochastic models are robust with respect to perturbations, due to measurement or approximation errors, in the underlying volatility process. Within the class of stochastic-volatility-modulated Ornstein–Uhlenbeck processes, we quantify the error induced by the volatility in terms of perturbations in the parameters of the volatility process. We moreover study the robustness of the volatility process itself with respect to finite-dimensional approximations of the driving compound Poisson process and semigroup generator, respectively, when considering operator-valued Barndorff-Nielsen and Shephard stochastic volatility models. We also give results on square root approximations. In all cases, we provide explicit bounds for the induced error in terms of the approximation of the underlying parameter. We discuss some applications to robustness of prices of options on forwards and volatility.
期刊介绍:
The purpose of Finance and Stochastics is to provide a high standard publication forum for research
- in all areas of finance based on stochastic methods
- on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance.
Finance and Stochastics encompasses - but is not limited to - the following fields:
- theory and analysis of financial markets
- continuous time finance
- derivatives research
- insurance in relation to finance
- portfolio selection
- credit and market risks
- term structure models
- statistical and empirical financial studies based on advanced stochastic methods
- numerical and stochastic solution techniques for problems in finance
- intertemporal economics, uncertainty and information in relation to finance.