评估为识别希格斯玻色子而对分类器进行的修改

Rishivarshil Nelakurti, Christopher Hill
{"title":"评估为识别希格斯玻色子而对分类器进行的修改","authors":"Rishivarshil Nelakurti, Christopher Hill","doi":"arxiv-2409.10902","DOIUrl":null,"url":null,"abstract":"The Higgs boson, discovered back in 2012 through collision data at the Large\nHadron Collider (LHC) by ATLAS and CMS experiments, marked a significant\ninflection point in High Energy Physics (HEP). Today, it's crucial to precisely\nmeasure Higgs production processes with LHC experiments in order to gain\ninsights into the universe and find any invisible physics. To analyze the vast\ndata that LHC experiments generate, classical machine learning has become an\ninvaluable tool. However, classical classifiers often struggle with detecting\nhiggs production processes, leading to incorrect labeling of Higgs Bosons. This\npaper aims to tackle this classification problem by investigating the use of\nquantum machine learning (QML).","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Modifications to Classifiers for Identification of Higgs Bosons\",\"authors\":\"Rishivarshil Nelakurti, Christopher Hill\",\"doi\":\"arxiv-2409.10902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Higgs boson, discovered back in 2012 through collision data at the Large\\nHadron Collider (LHC) by ATLAS and CMS experiments, marked a significant\\ninflection point in High Energy Physics (HEP). Today, it's crucial to precisely\\nmeasure Higgs production processes with LHC experiments in order to gain\\ninsights into the universe and find any invisible physics. To analyze the vast\\ndata that LHC experiments generate, classical machine learning has become an\\ninvaluable tool. However, classical classifiers often struggle with detecting\\nhiggs production processes, leading to incorrect labeling of Higgs Bosons. This\\npaper aims to tackle this classification problem by investigating the use of\\nquantum machine learning (QML).\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

早在 2012 年,ATLAS 和 CMS 实验就通过大型强子对撞机(LHC)的碰撞数据发现了希格斯玻色子,这标志着高能物理(HEP)的一个重要转折点。如今,利用大型强子对撞机实验精确测量希格斯粒子的产生过程对于洞察宇宙和发现任何不可见的物理现象至关重要。为了分析大型强子对撞机实验产生的大量数据,经典机器学习已成为一种宝贵的工具。然而,经典分类器在检测希格斯玻色子的产生过程时经常会遇到困难,导致对希格斯玻色子的错误标记。本文旨在通过研究量子机器学习(QML)的使用来解决这一分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Modifications to Classifiers for Identification of Higgs Bosons
The Higgs boson, discovered back in 2012 through collision data at the Large Hadron Collider (LHC) by ATLAS and CMS experiments, marked a significant inflection point in High Energy Physics (HEP). Today, it's crucial to precisely measure Higgs production processes with LHC experiments in order to gain insights into the universe and find any invisible physics. To analyze the vast data that LHC experiments generate, classical machine learning has become an invaluable tool. However, classical classifiers often struggle with detecting higgs production processes, leading to incorrect labeling of Higgs Bosons. This paper aims to tackle this classification problem by investigating the use of quantum machine learning (QML).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信