二维伊辛场论的交叉态和对偶性

Yueshui Zhang, Ying-Hai Wu, Lei Wang, Hong-Hao Tu
{"title":"二维伊辛场论的交叉态和对偶性","authors":"Yueshui Zhang, Ying-Hai Wu, Lei Wang, Hong-Hao Tu","doi":"arxiv-2409.11046","DOIUrl":null,"url":null,"abstract":"We propose two distinct crosscap states for the two-dimensional (2D) Ising\nfield theory. These two crosscap states, identifying Ising spins or dual spins\n(domain walls) at antipodal points, are shown to be related via the\nKramers-Wannier duality transformation. We derive their Majorana free field\nrepresentations and extend bosonization techniques to calculate correlation\nfunctions of the 2D Ising conformal field theory (CFT) with different crosscap\nboundaries. We further develop a conformal perturbation theory to calculate the\nKlein bottle entropy as a universal scaling function [Phys. Rev. Lett. 130,\n151602 (2023)] in the 2D Ising field theory. The formalism developed in this\nwork is applicable to many other 2D CFTs perturbed by relevant operators.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crosscap states and duality of Ising field theory in two dimensions\",\"authors\":\"Yueshui Zhang, Ying-Hai Wu, Lei Wang, Hong-Hao Tu\",\"doi\":\"arxiv-2409.11046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose two distinct crosscap states for the two-dimensional (2D) Ising\\nfield theory. These two crosscap states, identifying Ising spins or dual spins\\n(domain walls) at antipodal points, are shown to be related via the\\nKramers-Wannier duality transformation. We derive their Majorana free field\\nrepresentations and extend bosonization techniques to calculate correlation\\nfunctions of the 2D Ising conformal field theory (CFT) with different crosscap\\nboundaries. We further develop a conformal perturbation theory to calculate the\\nKlein bottle entropy as a universal scaling function [Phys. Rev. Lett. 130,\\n151602 (2023)] in the 2D Ising field theory. The formalism developed in this\\nwork is applicable to many other 2D CFTs perturbed by relevant operators.\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为二维(2D)伊辛场理论提出了两种不同的交叉盖状态。通过克拉默-万尼尔对偶变换,我们证明了这两种交叉盖态通过对偶点识别伊辛自旋或双自旋(域壁)的关系。我们推导出它们的马约拉纳自由场表示,并扩展玻色子化技术来计算具有不同交叉帽边界的二维伊辛共形场论(CFT)的相关函数。我们进一步发展了共形扰动理论,以计算二维伊辛场论中作为普遍缩放函数的克莱因瓶熵[Phys.这项工作所建立的形式主义适用于许多其他被相关算子扰动的二维 CFT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crosscap states and duality of Ising field theory in two dimensions
We propose two distinct crosscap states for the two-dimensional (2D) Ising field theory. These two crosscap states, identifying Ising spins or dual spins (domain walls) at antipodal points, are shown to be related via the Kramers-Wannier duality transformation. We derive their Majorana free field representations and extend bosonization techniques to calculate correlation functions of the 2D Ising conformal field theory (CFT) with different crosscap boundaries. We further develop a conformal perturbation theory to calculate the Klein bottle entropy as a universal scaling function [Phys. Rev. Lett. 130, 151602 (2023)] in the 2D Ising field theory. The formalism developed in this work is applicable to many other 2D CFTs perturbed by relevant operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信