N$ 量子比特两族的多方纠缠与非局域性

Sanchit Srivastava, Shohini Ghose
{"title":"N$ 量子比特两族的多方纠缠与非局域性","authors":"Sanchit Srivastava, Shohini Ghose","doi":"arxiv-2409.10888","DOIUrl":null,"url":null,"abstract":"Quantum states of multiple qubits can violate Bell-type inequalities when\nthere is entanglement present between the qubits, indicating nonlocal behaviour\nof correlations. We analyze the relation between multipartite entanglement and\ngenuine multipartite nonlocality, characterized by Svetlichny inequality\nviolations, for two families of $N-$qubit states. We show that for the\ngeneralized GHZ family of states, Svetlichny inequality is not violated when\nthe $n-$tangle is less than $1/2$ for any number of qubits. On the other hand,\nthe maximal slice states always violate the Svetlichny inequality when\n$n-$tangle is nonzero, and the violation increases monotonically with tangle\nwhen the number of qubits is even. Our work generalizes the relations between\ntangle and Svetlichny inequality violation previously derived for three qubits.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipartite entanglement vs nonlocality for two families of $N$-qubit states\",\"authors\":\"Sanchit Srivastava, Shohini Ghose\",\"doi\":\"arxiv-2409.10888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum states of multiple qubits can violate Bell-type inequalities when\\nthere is entanglement present between the qubits, indicating nonlocal behaviour\\nof correlations. We analyze the relation between multipartite entanglement and\\ngenuine multipartite nonlocality, characterized by Svetlichny inequality\\nviolations, for two families of $N-$qubit states. We show that for the\\ngeneralized GHZ family of states, Svetlichny inequality is not violated when\\nthe $n-$tangle is less than $1/2$ for any number of qubits. On the other hand,\\nthe maximal slice states always violate the Svetlichny inequality when\\n$n-$tangle is nonzero, and the violation increases monotonically with tangle\\nwhen the number of qubits is even. Our work generalizes the relations between\\ntangle and Svetlichny inequality violation previously derived for three qubits.\",\"PeriodicalId\":501226,\"journal\":{\"name\":\"arXiv - PHYS - Quantum Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当量子比特之间存在纠缠时,多个量子比特的量子态可能违反贝尔式不等式,这表明相关性的非局域行为。我们分析了两个 $N-$ 量子比特态系列的多比特纠缠与真正的多比特非局域性(以违反斯韦特里奇尼不等式为特征)之间的关系。我们的研究表明,对于广义 GHZ 状态族,当任何量子比特数的 $n-$tangle 小于 1/2$ 时,都不会违反斯维特里奇尼不等式。另一方面,当 n-$tangle 非零时,最大切片态总是违反斯维特里奇尼不等式,而且当量子比特数为偶数时,违反情况随 tangle 的增大而单调增加。我们的研究概括了之前针对三个量子比特得出的三角形与斯维特利希尼不等式违反之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multipartite entanglement vs nonlocality for two families of $N$-qubit states
Quantum states of multiple qubits can violate Bell-type inequalities when there is entanglement present between the qubits, indicating nonlocal behaviour of correlations. We analyze the relation between multipartite entanglement and genuine multipartite nonlocality, characterized by Svetlichny inequality violations, for two families of $N-$qubit states. We show that for the generalized GHZ family of states, Svetlichny inequality is not violated when the $n-$tangle is less than $1/2$ for any number of qubits. On the other hand, the maximal slice states always violate the Svetlichny inequality when $n-$tangle is nonzero, and the violation increases monotonically with tangle when the number of qubits is even. Our work generalizes the relations between tangle and Svetlichny inequality violation previously derived for three qubits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信