多边形涡旋丝极限演化中的多分形和间歇性

IF 1.3 2区 数学 Q1 MATHEMATICS
Valeria Banica, Daniel Eceizabarrena, Andrea R. Nahmod, Luis Vega
{"title":"多边形涡旋丝极限演化中的多分形和间歇性","authors":"Valeria Banica, Daniel Eceizabarrena, Andrea R. Nahmod, Luis Vega","doi":"10.1007/s00208-024-02971-0","DOIUrl":null,"url":null,"abstract":"<p>With the aim of quantifying turbulent behaviors of vortex filaments, we study the multifractality and intermittency of the family of generalized Riemann’s non-differentiable functions </p><span>$$\\begin{aligned} R_{x_0}(t) = \\sum _{n \\ne 0} \\frac{e^{2\\pi i ( n^2 t + n x_0 ) } }{n^2}, \\qquad x_0 \\in [0,1]. \\end{aligned}$$</span><p>These functions represent, in a certain limit, the trajectory of regular polygonal vortex filaments that evolve according to the binormal flow. When <span>\\(x_0\\)</span> is rational, we show that <span>\\(R_{x_0}\\)</span> is multifractal and intermittent by completely determining the spectrum of singularities of <span>\\(R_{x_0}\\)</span> and computing the <span>\\(L^p\\)</span> norms of its Fourier high-pass filters, which are analogues of structure functions. We prove that <span>\\(R_{x_0}\\)</span> has a multifractal behavior also when <span>\\(x_0\\)</span> is irrational. The proofs rely on a careful design of Diophantine sets that depend on <span>\\(x_0\\)</span>, which we study by using the Duffin–Schaeffer theorem and the Mass Transference Principle.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifractality and intermittency in the limit evolution of polygonal vortex filaments\",\"authors\":\"Valeria Banica, Daniel Eceizabarrena, Andrea R. Nahmod, Luis Vega\",\"doi\":\"10.1007/s00208-024-02971-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the aim of quantifying turbulent behaviors of vortex filaments, we study the multifractality and intermittency of the family of generalized Riemann’s non-differentiable functions </p><span>$$\\\\begin{aligned} R_{x_0}(t) = \\\\sum _{n \\\\ne 0} \\\\frac{e^{2\\\\pi i ( n^2 t + n x_0 ) } }{n^2}, \\\\qquad x_0 \\\\in [0,1]. \\\\end{aligned}$$</span><p>These functions represent, in a certain limit, the trajectory of regular polygonal vortex filaments that evolve according to the binormal flow. When <span>\\\\(x_0\\\\)</span> is rational, we show that <span>\\\\(R_{x_0}\\\\)</span> is multifractal and intermittent by completely determining the spectrum of singularities of <span>\\\\(R_{x_0}\\\\)</span> and computing the <span>\\\\(L^p\\\\)</span> norms of its Fourier high-pass filters, which are analogues of structure functions. We prove that <span>\\\\(R_{x_0}\\\\)</span> has a multifractal behavior also when <span>\\\\(x_0\\\\)</span> is irrational. The proofs rely on a careful design of Diophantine sets that depend on <span>\\\\(x_0\\\\)</span>, which we study by using the Duffin–Schaeffer theorem and the Mass Transference Principle.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02971-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02971-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了量化涡旋丝的湍流行为,我们研究了广义黎曼无差异函数$$\begin{aligned}族的多重性和间歇性。R_{x_0}(t) = \sum _{n \ne 0} \frac{e^{2\pi i ( n^2 t + n x_0 ) } }{n^2}, \frac{e^{2\pi i ( n^2 t + n x_0 ) } }{n^2}.}{n^2}, \qquad x_0 \in [0,1].\end{aligned}$$这些函数在一定限度内代表了根据二正态流演化的规则多边形涡旋丝的轨迹。当 \(x_0\) 是有理数时,我们通过完全确定 \(R_{x_0}\) 的奇点谱并计算其傅里叶高通滤波器的 \(L^p\) 准则(它们是结构函数的类似物),证明 \(R_{x_0}\) 是多分形和间歇的。我们证明了当\(x_0\)是无理数时,\(R_{x_0}\)也具有多分形行为。证明依赖于对依赖于 \(x_0\) 的 Diophantine 集的精心设计,我们利用 Duffin-Schaeffer 定理和质量转移原理对其进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multifractality and intermittency in the limit evolution of polygonal vortex filaments

Multifractality and intermittency in the limit evolution of polygonal vortex filaments

With the aim of quantifying turbulent behaviors of vortex filaments, we study the multifractality and intermittency of the family of generalized Riemann’s non-differentiable functions

$$\begin{aligned} R_{x_0}(t) = \sum _{n \ne 0} \frac{e^{2\pi i ( n^2 t + n x_0 ) } }{n^2}, \qquad x_0 \in [0,1]. \end{aligned}$$

These functions represent, in a certain limit, the trajectory of regular polygonal vortex filaments that evolve according to the binormal flow. When \(x_0\) is rational, we show that \(R_{x_0}\) is multifractal and intermittent by completely determining the spectrum of singularities of \(R_{x_0}\) and computing the \(L^p\) norms of its Fourier high-pass filters, which are analogues of structure functions. We prove that \(R_{x_0}\) has a multifractal behavior also when \(x_0\) is irrational. The proofs rely on a careful design of Diophantine sets that depend on \(x_0\), which we study by using the Duffin–Schaeffer theorem and the Mass Transference Principle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信