论带脉冲的 Rayleigh-Liénard 系统周期解的唯一性

IF 1.3 2区 数学 Q1 MATHEMATICS
Hebai Chen, Jie Jin, Zhaoxia Wang, Dongmei Xiao
{"title":"论带脉冲的 Rayleigh-Liénard 系统周期解的唯一性","authors":"Hebai Chen, Jie Jin, Zhaoxia Wang, Dongmei Xiao","doi":"10.1007/s00208-024-02996-5","DOIUrl":null,"url":null,"abstract":"<p>This paper is to provide a criterion of the uniqueness of periodic solutions for a Rayleigh-Liénard system with state-dependent impulses. Notice that such results of a planar system with state-dependent impulses are few. Moreover, the Rayleigh-Liénard system with state-dependent impulses has wide applications, such as a simple pendulum and a spring vibrator. Further, we obtain the uniqueness of periodic solutions of the simple pendulum with state-dependent impulses and the spring vibrator with state-dependent impulses by the criterion.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"85 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the uniqueness of periodic solutions for a Rayleigh–Liénard system with impulses\",\"authors\":\"Hebai Chen, Jie Jin, Zhaoxia Wang, Dongmei Xiao\",\"doi\":\"10.1007/s00208-024-02996-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is to provide a criterion of the uniqueness of periodic solutions for a Rayleigh-Liénard system with state-dependent impulses. Notice that such results of a planar system with state-dependent impulses are few. Moreover, the Rayleigh-Liénard system with state-dependent impulses has wide applications, such as a simple pendulum and a spring vibrator. Further, we obtain the uniqueness of periodic solutions of the simple pendulum with state-dependent impulses and the spring vibrator with state-dependent impulses by the criterion.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02996-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02996-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在为具有状态相关脉冲的 Rayleigh-Liénard 系统提供周期解的唯一性准则。我们注意到,具有状态相关脉冲的平面系统的此类结果很少。此外,与状态相关脉冲的雷利-李纳系统应用广泛,如简单摆和弹簧振动器。此外,我们还通过判据得到了具有状态相关脉冲的简摆和具有状态相关脉冲的弹簧振子的周期解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the uniqueness of periodic solutions for a Rayleigh–Liénard system with impulses

On the uniqueness of periodic solutions for a Rayleigh–Liénard system with impulses

This paper is to provide a criterion of the uniqueness of periodic solutions for a Rayleigh-Liénard system with state-dependent impulses. Notice that such results of a planar system with state-dependent impulses are few. Moreover, the Rayleigh-Liénard system with state-dependent impulses has wide applications, such as a simple pendulum and a spring vibrator. Further, we obtain the uniqueness of periodic solutions of the simple pendulum with state-dependent impulses and the spring vibrator with state-dependent impulses by the criterion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信