{"title":"论带脉冲的 Rayleigh-Liénard 系统周期解的唯一性","authors":"Hebai Chen, Jie Jin, Zhaoxia Wang, Dongmei Xiao","doi":"10.1007/s00208-024-02996-5","DOIUrl":null,"url":null,"abstract":"<p>This paper is to provide a criterion of the uniqueness of periodic solutions for a Rayleigh-Liénard system with state-dependent impulses. Notice that such results of a planar system with state-dependent impulses are few. Moreover, the Rayleigh-Liénard system with state-dependent impulses has wide applications, such as a simple pendulum and a spring vibrator. Further, we obtain the uniqueness of periodic solutions of the simple pendulum with state-dependent impulses and the spring vibrator with state-dependent impulses by the criterion.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"85 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the uniqueness of periodic solutions for a Rayleigh–Liénard system with impulses\",\"authors\":\"Hebai Chen, Jie Jin, Zhaoxia Wang, Dongmei Xiao\",\"doi\":\"10.1007/s00208-024-02996-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is to provide a criterion of the uniqueness of periodic solutions for a Rayleigh-Liénard system with state-dependent impulses. Notice that such results of a planar system with state-dependent impulses are few. Moreover, the Rayleigh-Liénard system with state-dependent impulses has wide applications, such as a simple pendulum and a spring vibrator. Further, we obtain the uniqueness of periodic solutions of the simple pendulum with state-dependent impulses and the spring vibrator with state-dependent impulses by the criterion.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02996-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02996-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the uniqueness of periodic solutions for a Rayleigh–Liénard system with impulses
This paper is to provide a criterion of the uniqueness of periodic solutions for a Rayleigh-Liénard system with state-dependent impulses. Notice that such results of a planar system with state-dependent impulses are few. Moreover, the Rayleigh-Liénard system with state-dependent impulses has wide applications, such as a simple pendulum and a spring vibrator. Further, we obtain the uniqueness of periodic solutions of the simple pendulum with state-dependent impulses and the spring vibrator with state-dependent impulses by the criterion.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.