$$(-1,1)$$上的雅可比算子及其各种 m 函数

IF 0.7 4区 数学 Q2 MATHEMATICS
Fritz Gesztesy, Lance L. Littlejohn, Mateusz Piorkowski, Jonathan Stanfill
{"title":"$$(-1,1)$$上的雅可比算子及其各种 m 函数","authors":"Fritz Gesztesy, Lance L. Littlejohn, Mateusz Piorkowski, Jonathan Stanfill","doi":"10.1007/s11785-024-01576-4","DOIUrl":null,"url":null,"abstract":"<p>We offer a detailed treatment of spectral and Weyl–Titchmarsh–Kodaira theory for all self-adjoint Jacobi operator realizations of the differential expression </p><span>$$\\begin{aligned} \\tau _{\\alpha ,\\beta } =&amp;- (1-x)^{-\\alpha } (1+x)^{-\\beta }(d/dx) \\big ((1-x)^{\\alpha +1}(1+x)^{\\beta +1}\\big ) (d/dx), \\\\&amp;\\alpha , \\beta \\in {\\mathbb {R}}, \\, x \\in (-1,1), \\end{aligned}$$</span><p>in <span>\\(L^2\\big ((-1,1); (1-x)^{\\alpha } (1+x)^{\\beta } dx\\big )\\)</span>, <span>\\(\\alpha , \\beta \\in {\\mathbb {R}}\\)</span>. In addition to discussing the separated boundary conditions that lead to Jacobi orthogonal polynomials as eigenfunctions in detail, we exhaustively treat the case of coupled boundary conditions and illustrate the latter with the help of the general <span>\\(\\eta \\)</span>-periodic and Krein–von Neumann extensions. In particular, we treat all underlying Weyl–Titchmarsh–Kodaira and Green’s function induced <i>m</i>-functions and revisit their Nevanlinna–Herglotz property. We also consider connections to other differential operators associated with orthogonal polynomials such as Laguerre, Gegenbauer, and Chebyshev.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"34 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Jacobi Operator on $$(-1,1)$$ and Its Various m-Functions\",\"authors\":\"Fritz Gesztesy, Lance L. Littlejohn, Mateusz Piorkowski, Jonathan Stanfill\",\"doi\":\"10.1007/s11785-024-01576-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We offer a detailed treatment of spectral and Weyl–Titchmarsh–Kodaira theory for all self-adjoint Jacobi operator realizations of the differential expression </p><span>$$\\\\begin{aligned} \\\\tau _{\\\\alpha ,\\\\beta } =&amp;- (1-x)^{-\\\\alpha } (1+x)^{-\\\\beta }(d/dx) \\\\big ((1-x)^{\\\\alpha +1}(1+x)^{\\\\beta +1}\\\\big ) (d/dx), \\\\\\\\&amp;\\\\alpha , \\\\beta \\\\in {\\\\mathbb {R}}, \\\\, x \\\\in (-1,1), \\\\end{aligned}$$</span><p>in <span>\\\\(L^2\\\\big ((-1,1); (1-x)^{\\\\alpha } (1+x)^{\\\\beta } dx\\\\big )\\\\)</span>, <span>\\\\(\\\\alpha , \\\\beta \\\\in {\\\\mathbb {R}}\\\\)</span>. In addition to discussing the separated boundary conditions that lead to Jacobi orthogonal polynomials as eigenfunctions in detail, we exhaustively treat the case of coupled boundary conditions and illustrate the latter with the help of the general <span>\\\\(\\\\eta \\\\)</span>-periodic and Krein–von Neumann extensions. In particular, we treat all underlying Weyl–Titchmarsh–Kodaira and Green’s function induced <i>m</i>-functions and revisit their Nevanlinna–Herglotz property. We also consider connections to other differential operators associated with orthogonal polynomials such as Laguerre, Gegenbauer, and Chebyshev.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01576-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01576-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对微分表达式 $$\begin{aligned} 的所有自共雅各比算子实现的光谱和 Weyl-Titchmarsh-Kodaira 理论进行了详细论述。=&- (1-x)^{-\alpha }(1+x)^{-\beta }(d/dx) \big ((1-x)^{\alpha +1}(1+x)^{\beta +1}\big ) (d/dx), \&\alpha , \beta \in {\mathbb {R}}, \, x \in (-1,1), \end{aligned}$$in \(L^2\big ((-1,1); (1-x)^{\alpha }).(1+x)^{beta } dx\big )\),\(\alpha , \beta \in {\mathbb {R}}\).除了详细讨论导致雅可比正交多项式作为特征函数的分离边界条件外,我们还详尽地处理了耦合边界条件的情况,并借助一般的 \(\eta \)-periodic 和 Krein-von Neumann 扩展来说明后者。特别是,我们处理了所有底层的韦尔-蒂奇马什-柯达伊拉和格林函数诱导的 m 函数,并重温了它们的内万林纳-赫格洛茨性质。我们还考虑了与正交多项式相关的其他微分算子的联系,如 Laguerre、Gegenbauer 和 Chebyshev。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Jacobi Operator on $$(-1,1)$$ and Its Various m-Functions

We offer a detailed treatment of spectral and Weyl–Titchmarsh–Kodaira theory for all self-adjoint Jacobi operator realizations of the differential expression

$$\begin{aligned} \tau _{\alpha ,\beta } =&- (1-x)^{-\alpha } (1+x)^{-\beta }(d/dx) \big ((1-x)^{\alpha +1}(1+x)^{\beta +1}\big ) (d/dx), \\&\alpha , \beta \in {\mathbb {R}}, \, x \in (-1,1), \end{aligned}$$

in \(L^2\big ((-1,1); (1-x)^{\alpha } (1+x)^{\beta } dx\big )\), \(\alpha , \beta \in {\mathbb {R}}\). In addition to discussing the separated boundary conditions that lead to Jacobi orthogonal polynomials as eigenfunctions in detail, we exhaustively treat the case of coupled boundary conditions and illustrate the latter with the help of the general \(\eta \)-periodic and Krein–von Neumann extensions. In particular, we treat all underlying Weyl–Titchmarsh–Kodaira and Green’s function induced m-functions and revisit their Nevanlinna–Herglotz property. We also consider connections to other differential operators associated with orthogonal polynomials such as Laguerre, Gegenbauer, and Chebyshev.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信