求助PDF
{"title":"具有陡峭势阱和临界指数的耦合薛定谔系统的解决方案","authors":"Zongyan Lv, Zhongwei Tang","doi":"10.1515/ans-2023-0149","DOIUrl":null,"url":null,"abstract":"In the present paper, we consider the coupled Schrödinger systems with critical exponent:<jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>λ</m:mi> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:munderover accent=\"true\" accentunder=\"false\"> <m:mrow> <m:mo>∑</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:munderover> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mfenced close=\"|\" open=\"|\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>j</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mfenced close=\"|\" open=\"|\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mtext> </m:mtext> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1,2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>d</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$$\\begin{cases}-{\\Delta}{u}_{i}+\\left(\\lambda {V}_{i}\\left(x\\right)+{a}_{i}\\right){u}_{i}=\\sum _{j=1}^{d}{\\beta }_{ij}{\\left\\vert {u}_{j}\\right\\vert }^{3}\\left\\vert {u}_{i}\\right\\vert {u}_{i}\\quad \\,\\text{in}\\,{\\mathbb{R}}^{3},\\quad \\hfill \\\\ {u}_{i}\\in {H}^{1}\\left({\\mathbb{R}}^{N}\\right),\\quad i=1,2,\\dots ,d,\\quad \\hfill \\end{cases}$$</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_eq_999.png\"/> </jats:alternatives> </jats:disp-formula>where <jats:italic>d</jats:italic> ≥ 2, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ii</jats:italic> </jats:sub> > 0 for every <jats:italic>i</jats:italic>, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ij</jats:italic> </jats:sub> = <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ji</jats:italic> </jats:sub> when <jats:italic>i</jats:italic> ≠ <jats:italic>j</jats:italic>, <jats:italic>λ</jats:italic> > 0 is a parameter and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mtext>loc </m:mtext> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msubsup> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$0\\le {V}_{i}\\in {L}_{\\text{loc\\,}}^{\\infty }\\left({\\mathbb{R}}^{N}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> have a common bottom int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> composed of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${\\ell }_{0}\\left({\\ell }_{0}\\ge 1\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula> connected components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\left\\{{{\\Omega}}_{k}\\right\\}}_{k=1}^{{\\ell }_{0}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_004.png\"/> </jats:alternatives> </jats:inline-formula>, where int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_005.png\"/> </jats:alternatives> </jats:inline-formula> is the interior of the zero set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo stretchy=\"false\">∣</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)=\\left\\{x\\in {\\mathbb{R}}^{N}\\mid {V}_{i}\\left(x\\right)=0\\right\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_006.png\"/> </jats:alternatives> </jats:inline-formula> of <jats:italic>V</jats:italic> <jats:sub> <jats:italic>i</jats:italic> </jats:sub>. We study the existence of least energy positive solutions to this system which are trapped near the zero sets int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_007.png\"/> </jats:alternatives> </jats:inline-formula> for <jats:italic>λ</jats:italic> > 0 large for weakly cooperative case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mspace width=\"0.3333em\"/> <m:mi mathvariant=\"normal\">s</m:mi> <m:mi mathvariant=\"normal\">m</m:mi> <m:mi mathvariant=\"normal\">a</m:mi> <m:mi mathvariant=\"normal\">l</m:mi> <m:mi mathvariant=\"normal\">l</m:mi> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\left({\\beta }_{ij}{ >}0 \\mathrm{s}\\mathrm{m}\\mathrm{a}\\mathrm{l}\\mathrm{l}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_008.png\"/> </jats:alternatives> </jats:inline-formula> and for purely competitive case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\left({\\beta }_{ij}\\le 0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_009.png\"/> </jats:alternatives> </jats:inline-formula>. Besides, when <jats:italic>d</jats:italic> = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\left\\{{{\\Omega}}_{k}\\right\\}}_{k=1}^{\\ell }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_010.png\"/> </jats:alternatives> </jats:inline-formula> for large <jats:italic>λ</jats:italic>.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"18 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions to the coupled Schrödinger systems with steep potential well and critical exponent\",\"authors\":\"Zongyan Lv, Zhongwei Tang\",\"doi\":\"10.1515/ans-2023-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we consider the coupled Schrödinger systems with critical exponent:<jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"> <m:mfenced close=\\\"\\\" open=\\\"{\\\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mo>−</m:mo> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mfenced close=\\\")\\\" open=\\\"(\\\"> <m:mrow> <m:mi>λ</m:mi> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:munderover accent=\\\"true\\\" accentunder=\\\"false\\\"> <m:mrow> <m:mo>∑</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:munderover> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mfenced close=\\\"|\\\" open=\\\"|\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>j</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mfenced close=\\\"|\\\" open=\\\"|\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mtext> </m:mtext> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\"/> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\"/> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1,2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>d</m:mi> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\"/> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$$\\\\begin{cases}-{\\\\Delta}{u}_{i}+\\\\left(\\\\lambda {V}_{i}\\\\left(x\\\\right)+{a}_{i}\\\\right){u}_{i}=\\\\sum _{j=1}^{d}{\\\\beta }_{ij}{\\\\left\\\\vert {u}_{j}\\\\right\\\\vert }^{3}\\\\left\\\\vert {u}_{i}\\\\right\\\\vert {u}_{i}\\\\quad \\\\,\\\\text{in}\\\\,{\\\\mathbb{R}}^{3},\\\\quad \\\\hfill \\\\\\\\ {u}_{i}\\\\in {H}^{1}\\\\left({\\\\mathbb{R}}^{N}\\\\right),\\\\quad i=1,2,\\\\dots ,d,\\\\quad \\\\hfill \\\\end{cases}$$</jats:tex-math> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_eq_999.png\\\"/> </jats:alternatives> </jats:disp-formula>where <jats:italic>d</jats:italic> ≥ 2, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ii</jats:italic> </jats:sub> > 0 for every <jats:italic>i</jats:italic>, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ij</jats:italic> </jats:sub> = <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ji</jats:italic> </jats:sub> when <jats:italic>i</jats:italic> ≠ <jats:italic>j</jats:italic>, <jats:italic>λ</jats:italic> > 0 is a parameter and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mtext>loc </m:mtext> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msubsup> <m:mfenced close=\\\")\\\" open=\\\"(\\\"> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$0\\\\le {V}_{i}\\\\in {L}_{\\\\text{loc\\\\,}}^{\\\\infty }\\\\left({\\\\mathbb{R}}^{N}\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_001.png\\\"/> </jats:alternatives> </jats:inline-formula> have a common bottom int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\\\left(0\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_002.png\\\"/> </jats:alternatives> </jats:inline-formula> composed of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mfenced close=\\\")\\\" open=\\\"(\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${\\\\ell }_{0}\\\\left({\\\\ell }_{0}\\\\ge 1\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_003.png\\\"/> </jats:alternatives> </jats:inline-formula> connected components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mfenced close=\\\"}\\\" open=\\\"{\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\\\left\\\\{{{\\\\Omega}}_{k}\\\\right\\\\}}_{k=1}^{{\\\\ell }_{0}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_004.png\\\"/> </jats:alternatives> </jats:inline-formula>, where int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\\\left(0\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_005.png\\\"/> </jats:alternatives> </jats:inline-formula> is the interior of the zero set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mfenced close=\\\"}\\\" open=\\\"{\\\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo stretchy=\\\"false\\\">∣</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${V}_{i}^{-1}\\\\left(0\\\\right)=\\\\left\\\\{x\\\\in {\\\\mathbb{R}}^{N}\\\\mid {V}_{i}\\\\left(x\\\\right)=0\\\\right\\\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_006.png\\\"/> </jats:alternatives> </jats:inline-formula> of <jats:italic>V</jats:italic> <jats:sub> <jats:italic>i</jats:italic> </jats:sub>. We study the existence of least energy positive solutions to this system which are trapped near the zero sets int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\\\left(0\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_007.png\\\"/> </jats:alternatives> </jats:inline-formula> for <jats:italic>λ</jats:italic> > 0 large for weakly cooperative case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mfenced close=\\\")\\\" open=\\\"(\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mspace width=\\\"0.3333em\\\"/> <m:mi mathvariant=\\\"normal\\\">s</m:mi> <m:mi mathvariant=\\\"normal\\\">m</m:mi> <m:mi mathvariant=\\\"normal\\\">a</m:mi> <m:mi mathvariant=\\\"normal\\\">l</m:mi> <m:mi mathvariant=\\\"normal\\\">l</m:mi> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\\\left({\\\\beta }_{ij}{ >}0 \\\\mathrm{s}\\\\mathrm{m}\\\\mathrm{a}\\\\mathrm{l}\\\\mathrm{l}\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_008.png\\\"/> </jats:alternatives> </jats:inline-formula> and for purely competitive case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mfenced close=\\\")\\\" open=\\\"(\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\\\left({\\\\beta }_{ij}\\\\le 0\\\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_009.png\\\"/> </jats:alternatives> </jats:inline-formula>. Besides, when <jats:italic>d</jats:italic> = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:msubsup> <m:mrow> <m:mfenced close=\\\"}\\\" open=\\\"{\\\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\\\left\\\\{{{\\\\Omega}}_{k}\\\\right\\\\}}_{k=1}^{\\\\ell }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0149_ineq_010.png\\\"/> </jats:alternatives> </jats:inline-formula> for large <jats:italic>λ</jats:italic>.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0149\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
在本文中,我们考虑具有临界指数的耦合薛定谔系统: - Δ u i + λ V i ( x ) + a i u i = ∑ j = 1 d β i j u j 3 u i u i in R 3 , u i ∈ H 1 ( R N ) , i = 1,2 , ..., d , $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\rightvert }^{3}\left\vert {u}_{i}\rightvert {u}_{i}\quad \、\text{in}\,{\mathbb{R}}^{3},\quad \hfill \ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$ 其中 d ≥ 2, β ii >;0 for every i, β ij = β ji when i ≠ j, λ >;0 是一个参数,且 0 ≤ V i ∈ L loc ∞ R N $0\le {V}_{i}\in {L}_{text\{loc\、}}^{infty }\left({\mathbb{R}}^{N}\right)$ 有一个共同的底部 int V i - 1 ( 0 ) ${V}_{i}^{-1}left(0\right)$ 由 ℓ 0 ≥ 1 ${ell }_{0}\left({\ell }_{0}\ge 1\right)$ 连接的组件 Ω k k = 1 ℓ 0 ${left\{{\Omega}}_{k}\right\}}_{k=1}^{\ell }_{0}}$ 组成、其中 int V i - 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ 是零集 V i - 1 ( 0 ) = x∈ R N ∣ V i ( x ) = 0 ${V}_{i}^{-1}left(0\right)=left\{xin {\mathbb{R}}^{N}\mid {V}_{i}left(x\right)=0\right}$ of V i。我们研究了这个系统的最小能量正解的存在,这些正解被困在 λ > 0 大的弱合作情况 β i j > 的零集附近 int V i - 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ ;0 s m a l l $\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$ 而对于纯竞争情况 β i j ≤ 0 $\left({\beta }_{ij}\le 0\right)$ 。此外,当 d = 2 时,我们构建了一个单凸块完全非难解,该解在一个规定分量 Ω k k = 1 ℓ $\{left\{{{\Omega}}_{k}\right}}_{k=1}^{\ell }$ 时为大λ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions to the coupled Schrödinger systems with steep potential well and critical exponent
In the present paper, we consider the coupled Schrödinger systems with critical exponent: − Δ u i + λ V i ( x ) + a i u i = ∑ j = 1 d β i j u j 3 u i u i in R 3 , u i ∈ H 1 ( R N ) , i = 1,2 , … , d , $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\right\vert }^{3}\left\vert {u}_{i}\right\vert {u}_{i}\quad \,\text{in}\,{\mathbb{R}}^{3},\quad \hfill \\ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$ where d ≥ 2, β ii > 0 for every i , β ij = β ji when i ≠ j , λ > 0 is a parameter and 0 ≤ V i ∈ L loc ∞ R N $0\le {V}_{i}\in {L}_{\text{loc\,}}^{\infty }\left({\mathbb{R}}^{N}\right)$ have a common bottom int V i − 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ composed of ℓ 0 ℓ 0 ≥ 1 ${\ell }_{0}\left({\ell }_{0}\ge 1\right)$ connected components Ω k k = 1 ℓ 0 ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{{\ell }_{0}}$ , where int V i − 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ is the interior of the zero set V i − 1 ( 0 ) = x ∈ R N ∣ V i ( x ) = 0 ${V}_{i}^{-1}\left(0\right)=\left\{x\in {\mathbb{R}}^{N}\mid {V}_{i}\left(x\right)=0\right\}$ of V i . We study the existence of least energy positive solutions to this system which are trapped near the zero sets int V i − 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ for λ > 0 large for weakly cooperative case β i j > 0 s m a l l $\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$ and for purely competitive case β i j ≤ 0 $\left({\beta }_{ij}\le 0\right)$ . Besides, when d = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components Ω k k = 1 ℓ ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{\ell }$ for large λ .