{"title":"LncRNA TAAL是糖尿病视网膜病变中Tie1介导的血管功能的调节因子","authors":"Gyan Ranjan, Samriddhi Arora, Sarmeela Sharma, Lakshita Sharma, Rahul C Bhoyar, Vigneshwar Senthivel, Vinod Scaria, Subhabrata Chakrabarti, Inderjeet Kaur, Sridhar Sivasubbu, Rajender K Motiani","doi":"10.1101/2024.09.13.612383","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR), a leading cause of vision impairment and blindness, is characterized by abnormal retinal vascular changes due to chronic hyperglycemia. The Tie-1 signaling pathway, essential for vascular growth and remodeling, has emerged as a key therapeutic target, though its molecular mechanisms and interactome remain largely unclear. Through a protein-centric approach, we identified a novel lncRNA and named it Tie1-associated angiogenic lncRNA (TAAL). TAAL lncRNA regulates endothelial cell migration, proliferation, tube formation, and permeability by modulating ER-calcium homeostasis and cytoskeleton dynamics. In zebrafish, taal modulation led to angiogenic defects, which were rescued by human TAAL orthologue. Our molecular studies further revealed that TAAL negatively regulates Tie1 protein via ubiquitin-mediated degradation. Notably, TAAL expression is upregulated in the blood of DR patients and downregulated in endothelial DR cell models. Overexpression of TAAL restored endothelial permeability and VE-cadherin surface expression. These findings establish TAAL as a novel regulator of Tie1 protein turnover, with potential therapeutic implications for diabetic retinopathy.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA TAAL is a Modulator of Tie1-Mediated Vascular Function in Diabetic Retinopathy\",\"authors\":\"Gyan Ranjan, Samriddhi Arora, Sarmeela Sharma, Lakshita Sharma, Rahul C Bhoyar, Vigneshwar Senthivel, Vinod Scaria, Subhabrata Chakrabarti, Inderjeet Kaur, Sridhar Sivasubbu, Rajender K Motiani\",\"doi\":\"10.1101/2024.09.13.612383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR), a leading cause of vision impairment and blindness, is characterized by abnormal retinal vascular changes due to chronic hyperglycemia. The Tie-1 signaling pathway, essential for vascular growth and remodeling, has emerged as a key therapeutic target, though its molecular mechanisms and interactome remain largely unclear. Through a protein-centric approach, we identified a novel lncRNA and named it Tie1-associated angiogenic lncRNA (TAAL). TAAL lncRNA regulates endothelial cell migration, proliferation, tube formation, and permeability by modulating ER-calcium homeostasis and cytoskeleton dynamics. In zebrafish, taal modulation led to angiogenic defects, which were rescued by human TAAL orthologue. Our molecular studies further revealed that TAAL negatively regulates Tie1 protein via ubiquitin-mediated degradation. Notably, TAAL expression is upregulated in the blood of DR patients and downregulated in endothelial DR cell models. Overexpression of TAAL restored endothelial permeability and VE-cadherin surface expression. These findings establish TAAL as a novel regulator of Tie1 protein turnover, with potential therapeutic implications for diabetic retinopathy.\",\"PeriodicalId\":501246,\"journal\":{\"name\":\"bioRxiv - Genetics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.13.612383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.13.612383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LncRNA TAAL is a Modulator of Tie1-Mediated Vascular Function in Diabetic Retinopathy
Diabetic retinopathy (DR), a leading cause of vision impairment and blindness, is characterized by abnormal retinal vascular changes due to chronic hyperglycemia. The Tie-1 signaling pathway, essential for vascular growth and remodeling, has emerged as a key therapeutic target, though its molecular mechanisms and interactome remain largely unclear. Through a protein-centric approach, we identified a novel lncRNA and named it Tie1-associated angiogenic lncRNA (TAAL). TAAL lncRNA regulates endothelial cell migration, proliferation, tube formation, and permeability by modulating ER-calcium homeostasis and cytoskeleton dynamics. In zebrafish, taal modulation led to angiogenic defects, which were rescued by human TAAL orthologue. Our molecular studies further revealed that TAAL negatively regulates Tie1 protein via ubiquitin-mediated degradation. Notably, TAAL expression is upregulated in the blood of DR patients and downregulated in endothelial DR cell models. Overexpression of TAAL restored endothelial permeability and VE-cadherin surface expression. These findings establish TAAL as a novel regulator of Tie1 protein turnover, with potential therapeutic implications for diabetic retinopathy.