{"title":"一元根倾斜多项式代数上分级模块类别的组合学","authors":"Akihiro Higashitani, Kenta Ueyama","doi":"arxiv-2409.10904","DOIUrl":null,"url":null,"abstract":"We introduce an operation on skew-symmetric matrices over\n$\\mathbb{Z}/\\ell\\mathbb{Z}$ called switching, and also define a class of\nskew-symmetric matrices over $\\mathbb{Z}/\\ell\\mathbb{Z}$ referred to as modular\nEulerian matrices. We then show that these are closely related to the graded\nmodule categories over skew polynomial algebras at $\\ell$-th roots of unity. As\nan application, we study the point simplicial complexes of skew polynomial\nalgebras at cube roots of unity.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"196 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorics of graded module categories over skew polynomial algebras at roots of unity\",\"authors\":\"Akihiro Higashitani, Kenta Ueyama\",\"doi\":\"arxiv-2409.10904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an operation on skew-symmetric matrices over\\n$\\\\mathbb{Z}/\\\\ell\\\\mathbb{Z}$ called switching, and also define a class of\\nskew-symmetric matrices over $\\\\mathbb{Z}/\\\\ell\\\\mathbb{Z}$ referred to as modular\\nEulerian matrices. We then show that these are closely related to the graded\\nmodule categories over skew polynomial algebras at $\\\\ell$-th roots of unity. As\\nan application, we study the point simplicial complexes of skew polynomial\\nalgebras at cube roots of unity.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"196 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combinatorics of graded module categories over skew polynomial algebras at roots of unity
We introduce an operation on skew-symmetric matrices over
$\mathbb{Z}/\ell\mathbb{Z}$ called switching, and also define a class of
skew-symmetric matrices over $\mathbb{Z}/\ell\mathbb{Z}$ referred to as modular
Eulerian matrices. We then show that these are closely related to the graded
module categories over skew polynomial algebras at $\ell$-th roots of unity. As
an application, we study the point simplicial complexes of skew polynomial
algebras at cube roots of unity.