{"title":"膜的特征矩阵","authors":"Felix Lotter, Leonard Schmitz","doi":"arxiv-2409.11996","DOIUrl":null,"url":null,"abstract":"We prove that, unlike in the case of paths, the signature matrix of a\nmembrane does not satisfy any algebraic relations. We derive novel closed-form\nexpressions for the signatures of polynomial membranes and piecewise bilinear\ninterpolations for arbitrary $2$-parameter data in $d$-dimensional space. We\nshow that these two families of membranes admit the same set of signature\nmatrices and scrutinize the corresponding affine variety.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signature matrices of membranes\",\"authors\":\"Felix Lotter, Leonard Schmitz\",\"doi\":\"arxiv-2409.11996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that, unlike in the case of paths, the signature matrix of a\\nmembrane does not satisfy any algebraic relations. We derive novel closed-form\\nexpressions for the signatures of polynomial membranes and piecewise bilinear\\ninterpolations for arbitrary $2$-parameter data in $d$-dimensional space. We\\nshow that these two families of membranes admit the same set of signature\\nmatrices and scrutinize the corresponding affine variety.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that, unlike in the case of paths, the signature matrix of a
membrane does not satisfy any algebraic relations. We derive novel closed-form
expressions for the signatures of polynomial membranes and piecewise bilinear
interpolations for arbitrary $2$-parameter data in $d$-dimensional space. We
show that these two families of membranes admit the same set of signature
matrices and scrutinize the corresponding affine variety.