列式 $/infty$ 算法的列氏第三定理

Christopher L. Rogers, Jesse Wolfson
{"title":"列式 $/infty$ 算法的列氏第三定理","authors":"Christopher L. Rogers, Jesse Wolfson","doi":"arxiv-2409.08957","DOIUrl":null,"url":null,"abstract":"We prove Lie's Third Theorem for Lie $\\infty$-algebras: Every finite-type,\nhomologically and non-negatively graded $L_\\infty$-algebra over $\\mathbb{R}$\nintegrates to a finite-dimensional Lie $\\infty$-group.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie's Third Theorem for Lie $\\\\infty$-Algebras\",\"authors\":\"Christopher L. Rogers, Jesse Wolfson\",\"doi\":\"arxiv-2409.08957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove Lie's Third Theorem for Lie $\\\\infty$-algebras: Every finite-type,\\nhomologically and non-negatively graded $L_\\\\infty$-algebra over $\\\\mathbb{R}$\\nintegrates to a finite-dimensional Lie $\\\\infty$-group.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了列$\infty$-代数的列第三定理:在$\mathbb{R}$上的每一个有限型、同源和非负分级的$L_\infty$-代数都整合为一个有限维的列$\infty$-群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie's Third Theorem for Lie $\infty$-Algebras
We prove Lie's Third Theorem for Lie $\infty$-algebras: Every finite-type, homologically and non-negatively graded $L_\infty$-algebra over $\mathbb{R}$ integrates to a finite-dimensional Lie $\infty$-group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信