一类有限非交换环上的多项式函数

Amr Ali Abdulkader Al-Maktry, Susan F. El-Deken
{"title":"一类有限非交换环上的多项式函数","authors":"Amr Ali Abdulkader Al-Maktry, Susan F. El-Deken","doi":"arxiv-2409.10208","DOIUrl":null,"url":null,"abstract":"Let $R$ be a finite non-commutative ring with $1\\ne 0$. By a polynomial\nfunction on $R$, we mean a function $F\\colon R\\longrightarrow R$ induced by a\npolynomial $f=\\sum\\limits_{i=0}^{n}a_ix^i\\in R[x]$ via right substitution of\nthe variable $x$, i.e. $F(a)=f(a)= \\sum\\limits_{i=0}^{n}a_ia^i$ for every $a\\in R$. In this paper,\nwe study the polynomial functions of the free $R$-algebra with a central basis\n$\\{1,\\beta_1,\\ldots,\\beta_k\\}$ ($k\\ge 1$) such that $\\beta_i\\beta_j=0$ for\nevery $1\\le i,j\\le k$, $R[\\beta_1,\\ldots,\\beta_k]$. %, the ring of dual numbers\nover $R$ in $k$ variables. Our investigation revolves around assigning a polynomial $\\lambda_f(y,z)$\nover $R$ in non-commutative variables $y$ and $z$ to each polynomial $f$ in\n$R[x]$; and describing the polynomial functions on $R[\\beta_1,\\ldots,\\beta_k]$\nthrough the polynomial functions induced on $R$ by polynomials in $R[x]$ and by\ntheir assigned polynomials in the in non-commutative variables $y$ and $z$.\n%and analyzing the resulting polynomial functions on\n$R[\\beta_1,\\ldots,\\beta_k]$. By extending results from the commutative case to the non-commutative\nscenario, we demonstrate that several properties and theorems in the\ncommutative case can be generalized to the non-commutative setting with\nappropriate adjustments.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial functions on a class of finite non-commutative rings\",\"authors\":\"Amr Ali Abdulkader Al-Maktry, Susan F. El-Deken\",\"doi\":\"arxiv-2409.10208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a finite non-commutative ring with $1\\\\ne 0$. By a polynomial\\nfunction on $R$, we mean a function $F\\\\colon R\\\\longrightarrow R$ induced by a\\npolynomial $f=\\\\sum\\\\limits_{i=0}^{n}a_ix^i\\\\in R[x]$ via right substitution of\\nthe variable $x$, i.e. $F(a)=f(a)= \\\\sum\\\\limits_{i=0}^{n}a_ia^i$ for every $a\\\\in R$. In this paper,\\nwe study the polynomial functions of the free $R$-algebra with a central basis\\n$\\\\{1,\\\\beta_1,\\\\ldots,\\\\beta_k\\\\}$ ($k\\\\ge 1$) such that $\\\\beta_i\\\\beta_j=0$ for\\nevery $1\\\\le i,j\\\\le k$, $R[\\\\beta_1,\\\\ldots,\\\\beta_k]$. %, the ring of dual numbers\\nover $R$ in $k$ variables. Our investigation revolves around assigning a polynomial $\\\\lambda_f(y,z)$\\nover $R$ in non-commutative variables $y$ and $z$ to each polynomial $f$ in\\n$R[x]$; and describing the polynomial functions on $R[\\\\beta_1,\\\\ldots,\\\\beta_k]$\\nthrough the polynomial functions induced on $R$ by polynomials in $R[x]$ and by\\ntheir assigned polynomials in the in non-commutative variables $y$ and $z$.\\n%and analyzing the resulting polynomial functions on\\n$R[\\\\beta_1,\\\\ldots,\\\\beta_k]$. By extending results from the commutative case to the non-commutative\\nscenario, we demonstrate that several properties and theorems in the\\ncommutative case can be generalized to the non-commutative setting with\\nappropriate adjustments.\",\"PeriodicalId\":501136,\"journal\":{\"name\":\"arXiv - MATH - Rings and Algebras\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Rings and Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $R$ 是一个有 $1\ne 0$ 的有限非交换环。关于 $R$ 上的多项式函数,我们指的是由 R[x]$ 中通过变量 $x$ 的右置换引起的多项式函数 $F\colon R\longrightarrow R$,即对于 R$ 中的每一个 $a/$,函数 $F(a)=f(a)=\sum\limits_{i=0}^{n}a_ia^i$。在本文中,我们研究的是自由 $R$-algebra 的多项式函数,它有一个中心基$\{1,\beta_1,\ldots,\beta_k\}$($k\ge 1$),使得 $\beta_i\beta_j=0$ foreververy $1\le i,j\le k$,$R[\beta_1,\ldots,\beta_k]$。%,是 $k$ 变量中 $R$ 上的对偶数环。我们的研究围绕着在非交换变量 $y$ 和 $z$ 的 $R$ 上为 R[x]$ 中的每个多项式 $f$ 分配一个多项式 $\lambda_f(y,z)$;通过$R[x]$中的多项式及其在非交换变量$y$和$z$中分配的多项式在$R$上引起的多项式函数来描述$R[\beta_1,\ldots,\beta_k]$上的多项式函数。分析在$R[\beta_1,\ldots,\beta_k]$上得到的多项式函数。通过将交换情况下的结果推广到非交换情况下,我们证明交换情况下的一些性质和定理可以通过适当的调整推广到非交换情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial functions on a class of finite non-commutative rings
Let $R$ be a finite non-commutative ring with $1\ne 0$. By a polynomial function on $R$, we mean a function $F\colon R\longrightarrow R$ induced by a polynomial $f=\sum\limits_{i=0}^{n}a_ix^i\in R[x]$ via right substitution of the variable $x$, i.e. $F(a)=f(a)= \sum\limits_{i=0}^{n}a_ia^i$ for every $a\in R$. In this paper, we study the polynomial functions of the free $R$-algebra with a central basis $\{1,\beta_1,\ldots,\beta_k\}$ ($k\ge 1$) such that $\beta_i\beta_j=0$ for every $1\le i,j\le k$, $R[\beta_1,\ldots,\beta_k]$. %, the ring of dual numbers over $R$ in $k$ variables. Our investigation revolves around assigning a polynomial $\lambda_f(y,z)$ over $R$ in non-commutative variables $y$ and $z$ to each polynomial $f$ in $R[x]$; and describing the polynomial functions on $R[\beta_1,\ldots,\beta_k]$ through the polynomial functions induced on $R$ by polynomials in $R[x]$ and by their assigned polynomials in the in non-commutative variables $y$ and $z$. %and analyzing the resulting polynomial functions on $R[\beta_1,\ldots,\beta_k]$. By extending results from the commutative case to the non-commutative scenario, we demonstrate that several properties and theorems in the commutative case can be generalized to the non-commutative setting with appropriate adjustments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信