具有饱和发病机制的多斑块流行病模型的动态解

Yawo Ezunkpe, Cynthia T. Nnolum, Rachidi B. Salako, Shuwen Xue
{"title":"具有饱和发病机制的多斑块流行病模型的动态解","authors":"Yawo Ezunkpe, Cynthia T. Nnolum, Rachidi B. Salako, Shuwen Xue","doi":"arxiv-2409.11443","DOIUrl":null,"url":null,"abstract":"This study examines the behavior of solutions in a multi-patch epidemic model\nthat includes a saturation incidence mechanism. When the fatality rate due to\nthe disease is not null, our findings show that the solutions of the model tend\nto stabilize at disease-free equilibria. Conversely, when the disease-induced\nfatality rate is null, the dynamics of the model become more intricate.\nNotably, in this scenario, while the saturation effect reduces the basic\nreproduction number $\\mathcal{R}_0$, it can also lead to a backward bifurcation\nof the endemic equilibria curve at $\\mathcal{R}_0=1$. Provided certain\nfundamental assumptions are satisfied, we offer a detailed analysis of the\nglobal dynamics of solutions based on the value of $\\mathcal{R}_0$.\nAdditionally, we investigate the asymptotic profiles of endemic equilibria as\npopulation dispersal rates tend to zero. To support and illustrate our\ntheoretical findings, we conduct numerical simulations.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism\",\"authors\":\"Yawo Ezunkpe, Cynthia T. Nnolum, Rachidi B. Salako, Shuwen Xue\",\"doi\":\"arxiv-2409.11443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the behavior of solutions in a multi-patch epidemic model\\nthat includes a saturation incidence mechanism. When the fatality rate due to\\nthe disease is not null, our findings show that the solutions of the model tend\\nto stabilize at disease-free equilibria. Conversely, when the disease-induced\\nfatality rate is null, the dynamics of the model become more intricate.\\nNotably, in this scenario, while the saturation effect reduces the basic\\nreproduction number $\\\\mathcal{R}_0$, it can also lead to a backward bifurcation\\nof the endemic equilibria curve at $\\\\mathcal{R}_0=1$. Provided certain\\nfundamental assumptions are satisfied, we offer a detailed analysis of the\\nglobal dynamics of solutions based on the value of $\\\\mathcal{R}_0$.\\nAdditionally, we investigate the asymptotic profiles of endemic equilibria as\\npopulation dispersal rates tend to zero. To support and illustrate our\\ntheoretical findings, we conduct numerical simulations.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了包含饱和发病机制的多斑块流行病模型的解的行为。我们的研究结果表明,当疾病导致的死亡率不为零时,模型的解趋于稳定在无疾病均衡状态。值得注意的是,在这种情况下,虽然饱和效应会降低基本生产数 $\mathcal{R}_0$,但它也会导致地方病均衡曲线在 $\mathcal{R}_0=1$ 时向后分叉。在满足某些基本假设的前提下,我们根据 $\mathcal{R}_0$ 的值对解的全局动力学进行了详细分析。为了支持和说明我们的理论发现,我们进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism
This study examines the behavior of solutions in a multi-patch epidemic model that includes a saturation incidence mechanism. When the fatality rate due to the disease is not null, our findings show that the solutions of the model tend to stabilize at disease-free equilibria. Conversely, when the disease-induced fatality rate is null, the dynamics of the model become more intricate. Notably, in this scenario, while the saturation effect reduces the basic reproduction number $\mathcal{R}_0$, it can also lead to a backward bifurcation of the endemic equilibria curve at $\mathcal{R}_0=1$. Provided certain fundamental assumptions are satisfied, we offer a detailed analysis of the global dynamics of solutions based on the value of $\mathcal{R}_0$. Additionally, we investigate the asymptotic profiles of endemic equilibria as population dispersal rates tend to zero. To support and illustrate our theoretical findings, we conduct numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信